Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 22, Problem 23P
To determine
The coefficient of performance of the refrigerator.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If a 35.0%-efficient Carnot heat engine (Fig. 22.2) is run
in reverse so as to form a refrigerator (Fig. 22.4), what
would be this refrigerator's coefficient of performance?
A certain gasoline engine has an efficiency of 32.0%. What would the hot reservoir temperature (in °C) be for a Carnot engine having that efficiency, if it operates with a cold reservoir temperature of 210°C?
A certain Carnot engine was built in a laboratory. The lab technicians found out that if the temperature of the cold reservoir is kept at 295 K, the efficiency of the engine is 26.0%. If the hot reservoir is kept at constant temperature, at what temperature must the cold reservoir be set, so that the efficiency of the engine is increased to 33.0%?
Chapter 22 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 22.1 - The energy input to an engine is 4.00 times...Ch. 22.2 - The energy entering an electric heater by...Ch. 22.4 - Three engines operate between reservoirs separated...Ch. 22.6 - (a) Suppose you select four cards at random from a...Ch. 22.7 - An ideal gas is taken from an initial temperature...Ch. 22.7 - True or False: The entropy change in an adiabatic...Ch. 22 - Prob. 1OQCh. 22 - Prob. 2OQCh. 22 - Prob. 3OQCh. 22 - Of the following, which is not a statement of the...
Ch. 22 - Prob. 5OQCh. 22 - Prob. 6OQCh. 22 - Prob. 7OQCh. 22 - Prob. 8OQCh. 22 - Prob. 9OQCh. 22 - Prob. 10OQCh. 22 - The arrow OA in the PV diagram shown in Figure...Ch. 22 - The energy exhaust from a certain coal-fired...Ch. 22 - Discuss three different common examples of natural...Ch. 22 - Prob. 3CQCh. 22 - The first law of thermodynamics says you cant...Ch. 22 - Energy is the mistress of the Universe, and...Ch. 22 - (a) Give an example of an irreversible process...Ch. 22 - The device shown in Figure CQ22.7, called a...Ch. 22 - A steam-driven turbine is one major component of...Ch. 22 - Discuss the change in entropy of a gas that...Ch. 22 - Prob. 10CQCh. 22 - Prob. 11CQCh. 22 - (a) If you shake a jar full of jelly beans of...Ch. 22 - What are some factors that affect the efficiency...Ch. 22 - A particular heat engine has a mechanical power...Ch. 22 - The work done by an engine equals one-fourth the...Ch. 22 - A heat engine takes in 360 J of energy from a hot...Ch. 22 - A gun is a heat engine. In particular, it is an...Ch. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Suppose a heat engine is connected to two energy...Ch. 22 - Prob. 8PCh. 22 - During each cycle, a refrigerator ejects 625 kJ of...Ch. 22 - Prob. 10PCh. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - A freezer has a coefficient of performance of...Ch. 22 - Prob. 14PCh. 22 - One of the most efficient heat engines ever built...Ch. 22 - Prob. 16PCh. 22 - Prob. 17PCh. 22 - Prob. 18PCh. 22 - Prob. 19PCh. 22 - Prob. 20PCh. 22 - Prob. 21PCh. 22 - How much work does an ideal Carnot refrigerator...Ch. 22 - Prob. 23PCh. 22 - A power plant operates at a 32.0% efficiency...Ch. 22 - Prob. 25PCh. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - A heat engine operates in a Carnot cycle between...Ch. 22 - Suppose you build a two-engine device with the...Ch. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - Prob. 33PCh. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - Prob. 39PCh. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - A Styrofoam cup holding 125 g of hot water at 100C...Ch. 22 - Prob. 44PCh. 22 - A 1 500-kg car is moving at 20.0 m/s. The driver...Ch. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - Prob. 48PCh. 22 - Prob. 49PCh. 22 - What change in entropy occurs when a 27.9-g ice...Ch. 22 - Calculate the change in entropy of 250 g of water...Ch. 22 - Prob. 52PCh. 22 - Prob. 53PCh. 22 - Prob. 54PCh. 22 - Prob. 55PCh. 22 - Prob. 56APCh. 22 - Prob. 57APCh. 22 - A steam engine is operated in a cold climate where...Ch. 22 - Prob. 59APCh. 22 - Prob. 60APCh. 22 - Prob. 61APCh. 22 - In 1993, the U.S. government instituted a...Ch. 22 - Prob. 63APCh. 22 - Prob. 64APCh. 22 - Prob. 65APCh. 22 - Prob. 66APCh. 22 - In 1816, Robert Stirling, a Scottish clergyman,...Ch. 22 - Prob. 68APCh. 22 - Prob. 69APCh. 22 - Prob. 70APCh. 22 - Prob. 71APCh. 22 - Prob. 72APCh. 22 - Prob. 73APCh. 22 - A system consisting of n moles of an ideal gas...Ch. 22 - A heat engine operates between two reservoirs at...Ch. 22 - Prob. 76APCh. 22 - Prob. 77APCh. 22 - Prob. 78APCh. 22 - A sample of an ideal gas expands isothermally,...Ch. 22 - Prob. 80APCh. 22 - Prob. 81CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that the coefficients of performance of refrigerators and heat pumps are related by COPref=COPhp1. Start with the definitions of the COP s and the conservation of energy relationship between Qh, QC, and W.arrow_forwardA Carnot engine has an efficiency of 0.60. When the temperature of its cold reservoir the efficiency drops to 0.55. If initially Tc=27, determine (a) the constant value of Th and (b) the final value of Tc.arrow_forwardWhich of the following is true for the entropy change of a system that undergoes a reversible, adiabatic process? (a) S 0 (b) S = 0 (c) S 0arrow_forward
- Of the following, which is not a statement of the second law of thermodynamics? (a) No heat engine operating in a cycle can absorb energy from a reservoir and use it entirely to do work, (b) No real engine operating between two energy reservoirs can be more efficient than a Carnot engine operating between the same two reservoirs, (c) When a system undergoes a change in state, the change in the internal energy of the system is the sum of the energy transferred to the system by heat and the work done on the system, (d) The entropy of the Universe increases in all natural processes, (e) Energy will not spontaneously transfer by heat from a cold object to a hot object.arrow_forwardTrue or False: The entropy change in an adiabatic process must be zero because Q = 0.arrow_forwardHow could you design a Carnot engine with 100% efficiency?arrow_forward
- Suppose you want to operate an ideal refrigerator with a cold temperature of 10.0C, and you would like it to have a coefficient of performance 7.00. What is the hot reservoir temperature for such a refrigerator?arrow_forwardSteam locomotives have an efficiency of 17.0% and operate with a hot steam temperature of 425C. (a) What would the cold reservoir temperature be if this were a Carnot engine? (b) What would the maximum eficiency of this steam engine be if its cold reservoir temperature were 150C ?arrow_forwardA copper rod of cross-sectional area 5.0 cm2 and length 5.0 m conducts heat from a heat reservoir at 373 K to one at 273 K. What is the time rate of change of the universe's entropy for this process?arrow_forward
- A certain gasoline engine has an efficiency of 30.0%. What would the hot reservoir temperature be for a Carnot engine having that eficiency, if it operates with a cold reservoir temperature of 200°C?arrow_forwardUse a PV diagram such as the one in Figure 22.2 (page 653) to figure out how you could modify an engine to increase the work done.arrow_forwardA Carnot engine operates in a Carnot cycle between a heat source at 550 and a heat sink at 20 . Find the efficiency of the Carnot engine.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY