University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21.7, Problem 21.7TYU
An electric dipole is placed in a region of uniform electric field
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need the answer at 15 minute
Consider the equal and opposite charges shown below where Q = 7.0 µC. (For the following questions, use the following as necessary: a, ε0. Do not include units in your answers. Assume SI units.)
(a) What is the dipole moment of the configuration shown below?
p = __ i + __ k + __ k
(b)What is the torque on this dipole with an electric field of 6.0 ✕ 105 N/C î?
τ = __ i + __ k + __ k
(c)What is the torque on this dipole with an electric field of
−6.0 ✕ 105 N/C î?
τ = __ i + __ k + __ k
d)What is the torque on this dipole with an electric field of 6.0 ✕ 105 N/C ĵ?
τ = __ i + __ k + __ k
What is the torque on this dipole with an electric field of
−6.0 ✕ 105 N/C ĵ?
τ = __ i + __ k + __ k
The water molecule's dipole moment is 6.17×10-30C⋅m. What would be the separation distance if the molecule consisted of charges ±e? (The effective charge is actually less because H and O atoms share the electrons.) Express answer with appropriate units.
Chapter 21 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 21.1 - Two charged objects repel each other through the...Ch. 21.2 - You have two lightweight metal spheres, each...Ch. 21.3 - Suppose that charge q2 in Example 21.4 were 2.0 C....Ch. 21.4 - (a) A negative point charge moves along a...Ch. 21.5 - Suppose that the line of charge in Fig. 21.24...Ch. 21.6 - Suppose the electric field lines in a region of...Ch. 21.7 - An electric dipole is placed in a region of...Ch. 21 - If you peel two strips of transparent tape off the...Ch. 21 - Two metal spheres are hanging from nylon threads....Ch. 21 - The electric force between two charged particles...
Ch. 21 - Your clothing tends to cling together after going...Ch. 21 - An uncharged metal sphere hangs from a nylon...Ch. 21 - BIO Estimate how many electrons there are in your...Ch. 21 - Figure Q2I.7 shows some of the electric field...Ch. 21 - Good conductors of electricity, such as metals,...Ch. 21 - Suppose that the charge shown in Fig. 21.28a is...Ch. 21 - Two identical metal objects are mounted on...Ch. 21 - Because the charges on the electron and proton...Ch. 21 - If you walk across a nylon rug and then touch a...Ch. 21 - You have a negatively charged object. How can you...Ch. 21 - When two point charges of equal mass and charge...Ch. 21 - A point charge of mass m and charge Q and another...Ch. 21 - A proton is placed in a uniform electric field and...Ch. 21 - In Example 21.1 (Section 21.3) we saw that the...Ch. 21 - What similarities do electric forces have with...Ch. 21 - Two irregular objects A and B carry charges of...Ch. 21 - Atomic nuclei are made of protons and neutrons....Ch. 21 - Sufficiently strong electric fields can cause...Ch. 21 - The electric fields at point P due to the positive...Ch. 21 - The air temperature and the velocity of the air...Ch. 21 - Excess electrons are placed on a small lead sphere...Ch. 21 - Lightning occurs when there is a flow of electric...Ch. 21 - If a proton and an electron are released when they...Ch. 21 - Particles in a Gold Ring. You have a pure...Ch. 21 - BIO Signal Propagation in Neurons. Neurons are...Ch. 21 - Two small spheres spaced 20.0 cm apart have equal...Ch. 21 - An average human weighs about 650 N. If each of...Ch. 21 - Two small aluminum spheres, each having mass...Ch. 21 - Two small plastic spheres are given positive...Ch. 21 - Just How Strong Is the Electric Force? Suppose you...Ch. 21 - In an experiment in space, one proton is held...Ch. 21 - A negative charge of 0.550 C exerts an upward...Ch. 21 - Three point charges are arranged on a line. Charge...Ch. 21 - In Example 21.4, suppose the point charge on the...Ch. 21 - In Example 21.3, calculate the net force on charge...Ch. 21 - In Example 21.4, what is the net force (magnitude...Ch. 21 - Three point charges are arranged along the...Ch. 21 - Repeat Exercise 21.17 for q3 = +8.00 C.Ch. 21 - Two point charges are located on the y-axis as...Ch. 21 - Two point charges are placed on the .x -axis as...Ch. 21 - BIO Base Pairing in DNA, I. The two sides of the...Ch. 21 - BIO Base Pairing in DNA, II. Refer to Exercise...Ch. 21 - CP A proton is placed in a uniform electric field...Ch. 21 - A particle has charge 5.00 nC. (a) Find the...Ch. 21 - CP A proton is traveling horizontally to the right...Ch. 21 - CP An electron is released from rest in a uniform...Ch. 21 - (a) What must the charge (sign and magnitude) of a...Ch. 21 - Electric Field of the Earth. The earth has a net...Ch. 21 - CP An electron is projected with an initial speed...Ch. 21 - (a) Calculate the magnitude and direction...Ch. 21 - CP In Exercise 21.29, what is the speed of the...Ch. 21 - CP A uniform electric field exists in the region...Ch. 21 - A point charge is at the origin. With this point...Ch. 21 - A +8.75-C point charge is glued down on a...Ch. 21 - (a) An electron is moving east in a uniform...Ch. 21 - Two point charges Q and +q (where q is positive)...Ch. 21 - Two positive point charges q are placed on the...Ch. 21 - The two charges q1 and q2 shown in Fig. E21.38...Ch. 21 - A +2.00-nC point charge is at the origin, and a...Ch. 21 - Repeat Exercise 21.39, hut now let the charge at...Ch. 21 - Three negative point charges lie along a line as...Ch. 21 - A point charge is placed at each corner of a...Ch. 21 - Two point charges are separated by 25.0 cm (Fig....Ch. 21 - Point charge q1 = 5.00 nC is at the origin and...Ch. 21 - If two electrons are each 1.50 1010 m from a...Ch. 21 - BIO Electric Field of Axons. A nerve signal is...Ch. 21 - In a rectangular coordinate system a positive...Ch. 21 - A point charge q1 = 4.00 nC is at the point x =...Ch. 21 - A charge of 6.50nC is spread uniformly over the...Ch. 21 - A very long, straight wire has charge per unit...Ch. 21 - A ring-shaped conductor with radius a = 2.50 cm...Ch. 21 - A straight, nonconducting plastic wire 8.50 cm...Ch. 21 - Point charges q1 = 4.5 nC and q2 = +4.5 nC are...Ch. 21 - The ammonia molecule (NH3) has a dipole moment of...Ch. 21 - Torque on a Dipole. An electric dipole with dipole...Ch. 21 - The dipole moment of the water molecule (H2O) is...Ch. 21 - Three charges are at the corners of an isosceles...Ch. 21 - Consider the electric dipole of Example 21.14. (a)...Ch. 21 - Four identical charges Q are placed at the corners...Ch. 21 - Two charges are placed on the x-axis: one, of 2.50...Ch. 21 - A charge q1 = +5.00 nC is placed at the origin of...Ch. 21 - CP Two identical spheres with mass m are hung from...Ch. 21 - CP Two small spheres with mass m = 15.0 g are hung...Ch. 21 - CP Two identical spheres are each attached to silk...Ch. 21 - CP A small 12.3-g plastic ball is tied to a very...Ch. 21 - Point charge q1 = 6.00 106 C is on the x-axis at...Ch. 21 - Two particles having charges q1 = 0.500 nC and q2...Ch. 21 - A 3.00-nC point charge is on the x-axis at x =...Ch. 21 - A charge +Q is located at the origin, and a charge...Ch. 21 - A charge of 3.00 nC is placed at the origin of an...Ch. 21 - Three identical point charges q are placed at each...Ch. 21 - Two point charges q1 and q2 are held in place 4.50...Ch. 21 - CP Strength of the Electric Force. Imagine two...Ch. 21 - CP Two tiny spheres of mass 6.80 mg carry charges...Ch. 21 - CP Consider a model of a hydrogen atom in which an...Ch. 21 - The earth has a downward-directed electric field...Ch. 21 - CP A proton is projected into a uniform electric...Ch. 21 - A small object with mass m, charge q, and initial...Ch. 21 - CALC Positive charge Q is distributed uniformly...Ch. 21 - In a region where there is a uniform electric...Ch. 21 - A negative point charge q1 = 4.00 nC is on the...Ch. 21 - CALC Positive charge Q is distributed uniformly...Ch. 21 - A uniformly charged disk like the disk in Fig....Ch. 21 - CP A small sphere with mass m carries a positive...Ch. 21 - CALC Negative charge Q is distributed uniformly...Ch. 21 - CALC A semicircle of radius a is in the first and...Ch. 21 - Two 1.20-m non- conducting rods meet at a right...Ch. 21 - Two very large parallel sheets are 5.00 cm apart....Ch. 21 - Repeat Problem 21.88 for the case where sheet B is...Ch. 21 - Two very large horizontal sheets are 4.25 cm apart...Ch. 21 - CP A thin disk with a circular hole at its center,...Ch. 21 - DATA CP Design of an Inkjet Printer. Inkjet...Ch. 21 - DATA Two small spheres, each carrying a net...Ch. 21 - DATA Positive charge Q is distributed uniformly...Ch. 21 - Three charges are placed as shown in Fig. P21.95....Ch. 21 - Two charges are placed as shown in Fig. P21.96....Ch. 21 - CALC Two thin rods of length L lie along the...Ch. 21 - BIO ELECTRIC BEES. Flying insects such as bees may...Ch. 21 - BIO ELECTRIC BEES. Flying insects such as bees may...Ch. 21 - After one bcc left a flower with a positive...Ch. 21 - In a follow-up experiment, a charge of +40 pC was...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What requirement for superconductivity7 makes current superconducting devices expensive to operate?
University Physics Volume 2
In which of the following is positive work done by a person on a suitcase? a. The person holds a heavy suitcase...
College Physics
A spring of constant k = 340 N/m is used to launch a 1.5-kg block along a horizontal surface whose coefficient ...
Essential University Physics: Volume 1 (3rd Edition)
1. Is the universe in space or is space in the universe?
Conceptual Physical Science (6th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Is there displacement current in an electromagnetic wave? Is there ordinary conduction current?
Essential University Physics (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please solve asap and explain how you reached that solution properly. Thank you in advance!arrow_forwardAn electric dipole has a dipole moment of 7.27 x 10-15 Cm?. The dipole moment vector is initially oriented at # -18.39 to the +z-. axis. How much work will be done by an electric held 1.82 MX (-2) to bring the dipole to its stable equilibrium position (in n.J)? Could anyone how do you solve itarrow_forwardShown below (Figure 1) is an electric dipole with equal charges +Q and –Q separated by a distance d. The dipole is free to rotate or move. Consider the following information: The dipole sits inside an electric field with |E| > 0. The dipole feels the largest torque possible. When rotated from its original orientation and released, the dipole moves back towards the original orientation. (a) On the picture below, sketch field lines corresponding to an external electric field that is compatible with this description. (b) Qualitatively, describe what would happen if the external field is shifted by 90 degreesarrow_forward
- Can you explain also. Thank you.arrow_forwardAn electric dipole has a dipole moment of 5.76x10- Cm. The dipole moment vector is initially oriented at 0 =26.11° to the +x-axis. How much work will be done by an electric field 7.2 MN (-i) to bring the dipole to its stable equilibrium position (in n.?arrow_forwardWrite the expression for the work done on an electric dipole of dipole moment p in turning it from its position of stable equilibrium to a position of unstable equilibrium in a uniform electric field E.arrow_forward
- The figure shows four orientations of an electric dipole in an external field. For each of the four dipoles, give the angle between the p vector (dipole moment) and the E vector (electric field vector) that is used in the formula for torque: torque = p E sin (phi) where phi is the angle between the p and E vectors. For example, how do you know if you use theta or 180 - theta for orientation (1); do you use theta or negative theta for orientation 4?arrow_forwardA cylindrical shell, with inner radius p outer radius e, and length L, contains a total charge Q that is uniformly distributed all throughout its volume. Determine the total energy stored in this region by completing the expressions below: [A] E = [B] [K] U = [C]]D] [L] [G]" [F] [E] Note that [D] contains the differential elements only. Hint: You will use Gauss's Law to obtain the electric field within the region. v [A] A. P=Pa to p=P b v [B] B. p =0 to p =2n v [C) c. None of the choices v [D] D. dr de dp v JE E. 2TE 2- v [F v [G] v [K] v [L] H. z=0 to z=L I. - (p?-p.) K. Q2 L dpdфdz M.e(p²-p.")arrow_forwardShown below is an electric dipole with equal charges +Q and-Q separated by a distance d. The dipole is free to rotate or move. Consider the following information: The dipole sits inside an external electric field with E>0. The dipole does not feel a net torque. The dipole feels a net force in the-x direction. When rotated from its original orientation and released, the dipole moves back towards the original orientation. (a) On the picture below, sketch field lines corresponding to an external electric field that is compatible with this description. Do not include the field due to the dipole charges. (b) How would the force and torque on the dipole change if the magnitude of the negative charge was increased, Le. if the charge -Q was made more negative? (Two sentences maximum.)? UNITED STATES)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY