Concept explainers
DATA Positive charge Q is distributed uniformly around a very thin
Figure P21.94
Want to see the full answer?
Check out a sample textbook solutionChapter 21 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
The Cosmic Perspective
Conceptual Physical Science (6th Edition)
Sears And Zemansky's University Physics With Modern Physics
College Physics
An Introduction to Thermal Physics
- Suppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rb has charge -Q. The electric field E at a radial distance r from the central axis is given by the function: E = αe-r/a0 + β/r + b0 where alpha (α), beta (β), a0 and b0 are constants. Find an expression for its capacitance. First, let us derive the potential difference Vab between the two conductors. The potential difference is related to the electric field by: First, let us derive the potential difference Vab between the two conductors. The potential difference is related to the electric field by: Calculating the antiderivative or indefinite integral , Vab = (-αa0e-r/a0 + β + b0 ) By definition, the capacitance C is related to the charge and potential difference by: C = / Evaluating with the upper and lower limits of integration for Vab, then simplifying: C = Q / ( (e-rb/a0 - e-ra/a0) + β ln() + b0 () )arrow_forwardSuppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rb has charge -Q. The electric field E at a radial distance r from the central axis is given by the function: E = αe-r/a0 + β/r + b0 where alpha (α), beta (β), a0 and b0 are constants. Find an expression for its capacitance.arrow_forwardSuppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rb has charge -Q. The electric field E at a radial distance r from the central axis is given by the function: E = αe-r/a0 + β/r + b0arrow_forward
- Suppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rb has charge -Q. The electric field E at a radial distance r from the central axis is given by the function: E = αe-r/a0 + β/r + b0arrow_forwardSuppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rb has charge -Q. The electric field E at a radial distance r from the central axis is given by the function: E = αe-r/a0 + β/r + b0 where alpha (α), beta (β), a0 and b0 are constants. Find an expression for its capacitance. First, let us derive the potential difference Vab between the two conductors. The potential difference is related to the electric field by:arrow_forwardA thick insulating spherical shell of inner radius a=2.4R and outer radius b=6.1R has a uniform charge density p. pR What is the magnitude of the electric field at r=5.6 R ? Express your answer using one decimal place in units of €oarrow_forward
- There are point loads ,Q1 = 5, Q2 = 8 and Q3 = 6 at points A(-8,0), O(0,0) and B (6,0) in the OXY plane, respectively. Write the value of the x-component of the electric field in ke numerically at the point P(0, 10) on the-axis.arrow_forwardSuppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rh has charge -Q. The electric field E at a radial distance r from the central axis is given by the function: E = ae-r/ao + B/r + bo where alpha (a), beta (B), ao and bo are constants. Find an expression for its capacitance. First, let us derive the potential difference Vab between the two conductors. The potential difference is related to the electric field by: Vab = Edr = - Edr Calculating the antiderivative or indefinite integral, Vab = (-aager/ao + B + bo By definition, the capacitance Cis related to the charge and potential difference by: C = Evaluating with the upper and lower limits of integration for Vab, then simplifying: C = Q/( (e rb/ao - eTalao) + B In( ) + bo ( ))arrow_forwardA 27 nC charge generates an electric field within an isolated chamber. At a point a distance d meters away from the charge, the electric field is measured to be 4 N/C. Determine d in meters. Use k=9 x109 for the electric constant.arrow_forward
- Suppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rh has charge -Q. The electric field E at a radial distancer from the central axis is given by the function: E = ae-r/ao + B/r + bo where alpha (a), beta (B), ao and bo are constants. Find an expression for its capacitance. First, let us derive the potential difference Vab between the two conductors. The potential difference is related to the electric field by: Vab = Edr = - Edr Calculating the antiderivative or indefinite integral, Vab = (-aaoe-r/ao + B + bo By definition, the capacitance C is related to the charge and potential difference by: C= Q I Vabarrow_forwardSuppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rp has charge -Q. The electric field E at a radial distance r from the central axis is given by the function: E = ae-r/ao + B/r + bo where alpha (a), beta (B), ao and bo are constants. Find an expression for its capacitance. First, let us derive the potential difference Vab between the two conductors. The potential difference is related to the electric field by: ['´e Vob = Edr= - Edr Calculating the antiderivative or indefinite integral, Vab = (-aaoe¯r7ao + B + bo By definition, the capacitance C is related to the charge and potential difference by: C = Evaluating with the upper and lower limits of integration for Vab, then simplifying: C = Q / ( (erb/ao - eralao) + B In( ) + bo ( ))arrow_forwardA cylindrical capacitor consists of a solid conducting cylinder with a radius of 0.260 cm and a coaxial conducting tube around it. There is air between the conductors and the length of the cylinder is 12.5 cm. If the capacity of the device is 38.5 pF; Part A: Calculate the inner radius of the outer tube.(r=?) Part B: What is the stored charge per unit length, λ when the shaver is loaded with 130 V? (λ=?)arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning