University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 21.68P
A −3.00-nC point charge is on the x-axis at x = 1.20 m. A second point charge, Q, is on the x-axis at −0.600 m. What must be the sign and magnitude of Q for the resultant electric field at the origin to be (a) 45.0 N/C in the +x-direction, (b) 45.0 N/C in the x-direction?
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule05:26
Students have asked these similar questions
A +4.9 µC point charge is on the x-axis at x = -3.0 m, and a +1.9 µC point charge is on the x-axis at x = +1.0 m. Determine the net electric field (magnitude and direction) on the y-axis at y = +2.0 m.
magnitude
= N/C
direction
= ° counterclockwise from the +x-axis.
A charge of 14.2 nC is at 8.2 cm on the x axis, and 93.5 nC is located at -5 cm on the y-axis. What is the magnitude of the electric field at the origin, in N/C?
a -5.00nC point charge is on the x-axis at x=1.20m. A second point charge Q is on the x-axis at -6.00m. What must be the sign and magnitude of Q for the resultant electric field at the origin to be (a) 45.0 N/C in the -x-direction, (b) 45.0 N/C in the +x-direction.
Chapter 21 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 21.1 - Two charged objects repel each other through the...Ch. 21.2 - You have two lightweight metal spheres, each...Ch. 21.3 - Suppose that charge q2 in Example 21.4 were 2.0 C....Ch. 21.4 - (a) A negative point charge moves along a...Ch. 21.5 - Suppose that the line of charge in Fig. 21.24...Ch. 21.6 - Suppose the electric field lines in a region of...Ch. 21.7 - An electric dipole is placed in a region of...Ch. 21 - If you peel two strips of transparent tape off the...Ch. 21 - Two metal spheres are hanging from nylon threads....Ch. 21 - The electric force between two charged particles...
Ch. 21 - Your clothing tends to cling together after going...Ch. 21 - An uncharged metal sphere hangs from a nylon...Ch. 21 - BIO Estimate how many electrons there are in your...Ch. 21 - Figure Q2I.7 shows some of the electric field...Ch. 21 - Good conductors of electricity, such as metals,...Ch. 21 - Suppose that the charge shown in Fig. 21.28a is...Ch. 21 - Two identical metal objects are mounted on...Ch. 21 - Because the charges on the electron and proton...Ch. 21 - If you walk across a nylon rug and then touch a...Ch. 21 - You have a negatively charged object. How can you...Ch. 21 - When two point charges of equal mass and charge...Ch. 21 - A point charge of mass m and charge Q and another...Ch. 21 - A proton is placed in a uniform electric field and...Ch. 21 - In Example 21.1 (Section 21.3) we saw that the...Ch. 21 - What similarities do electric forces have with...Ch. 21 - Two irregular objects A and B carry charges of...Ch. 21 - Atomic nuclei are made of protons and neutrons....Ch. 21 - Sufficiently strong electric fields can cause...Ch. 21 - The electric fields at point P due to the positive...Ch. 21 - The air temperature and the velocity of the air...Ch. 21 - Excess electrons are placed on a small lead sphere...Ch. 21 - Lightning occurs when there is a flow of electric...Ch. 21 - If a proton and an electron are released when they...Ch. 21 - Particles in a Gold Ring. You have a pure...Ch. 21 - BIO Signal Propagation in Neurons. Neurons are...Ch. 21 - Two small spheres spaced 20.0 cm apart have equal...Ch. 21 - An average human weighs about 650 N. If each of...Ch. 21 - Two small aluminum spheres, each having mass...Ch. 21 - Two small plastic spheres are given positive...Ch. 21 - Just How Strong Is the Electric Force? Suppose you...Ch. 21 - In an experiment in space, one proton is held...Ch. 21 - A negative charge of 0.550 C exerts an upward...Ch. 21 - Three point charges are arranged on a line. Charge...Ch. 21 - In Example 21.4, suppose the point charge on the...Ch. 21 - In Example 21.3, calculate the net force on charge...Ch. 21 - In Example 21.4, what is the net force (magnitude...Ch. 21 - Three point charges are arranged along the...Ch. 21 - Repeat Exercise 21.17 for q3 = +8.00 C.Ch. 21 - Two point charges are located on the y-axis as...Ch. 21 - Two point charges are placed on the .x -axis as...Ch. 21 - BIO Base Pairing in DNA, I. The two sides of the...Ch. 21 - BIO Base Pairing in DNA, II. Refer to Exercise...Ch. 21 - CP A proton is placed in a uniform electric field...Ch. 21 - A particle has charge 5.00 nC. (a) Find the...Ch. 21 - CP A proton is traveling horizontally to the right...Ch. 21 - CP An electron is released from rest in a uniform...Ch. 21 - (a) What must the charge (sign and magnitude) of a...Ch. 21 - Electric Field of the Earth. The earth has a net...Ch. 21 - CP An electron is projected with an initial speed...Ch. 21 - (a) Calculate the magnitude and direction...Ch. 21 - CP In Exercise 21.29, what is the speed of the...Ch. 21 - CP A uniform electric field exists in the region...Ch. 21 - A point charge is at the origin. With this point...Ch. 21 - A +8.75-C point charge is glued down on a...Ch. 21 - (a) An electron is moving east in a uniform...Ch. 21 - Two point charges Q and +q (where q is positive)...Ch. 21 - Two positive point charges q are placed on the...Ch. 21 - The two charges q1 and q2 shown in Fig. E21.38...Ch. 21 - A +2.00-nC point charge is at the origin, and a...Ch. 21 - Repeat Exercise 21.39, hut now let the charge at...Ch. 21 - Three negative point charges lie along a line as...Ch. 21 - A point charge is placed at each corner of a...Ch. 21 - Two point charges are separated by 25.0 cm (Fig....Ch. 21 - Point charge q1 = 5.00 nC is at the origin and...Ch. 21 - If two electrons are each 1.50 1010 m from a...Ch. 21 - BIO Electric Field of Axons. A nerve signal is...Ch. 21 - In a rectangular coordinate system a positive...Ch. 21 - A point charge q1 = 4.00 nC is at the point x =...Ch. 21 - A charge of 6.50nC is spread uniformly over the...Ch. 21 - A very long, straight wire has charge per unit...Ch. 21 - A ring-shaped conductor with radius a = 2.50 cm...Ch. 21 - A straight, nonconducting plastic wire 8.50 cm...Ch. 21 - Point charges q1 = 4.5 nC and q2 = +4.5 nC are...Ch. 21 - The ammonia molecule (NH3) has a dipole moment of...Ch. 21 - Torque on a Dipole. An electric dipole with dipole...Ch. 21 - The dipole moment of the water molecule (H2O) is...Ch. 21 - Three charges are at the corners of an isosceles...Ch. 21 - Consider the electric dipole of Example 21.14. (a)...Ch. 21 - Four identical charges Q are placed at the corners...Ch. 21 - Two charges are placed on the x-axis: one, of 2.50...Ch. 21 - A charge q1 = +5.00 nC is placed at the origin of...Ch. 21 - CP Two identical spheres with mass m are hung from...Ch. 21 - CP Two small spheres with mass m = 15.0 g are hung...Ch. 21 - CP Two identical spheres are each attached to silk...Ch. 21 - CP A small 12.3-g plastic ball is tied to a very...Ch. 21 - Point charge q1 = 6.00 106 C is on the x-axis at...Ch. 21 - Two particles having charges q1 = 0.500 nC and q2...Ch. 21 - A 3.00-nC point charge is on the x-axis at x =...Ch. 21 - A charge +Q is located at the origin, and a charge...Ch. 21 - A charge of 3.00 nC is placed at the origin of an...Ch. 21 - Three identical point charges q are placed at each...Ch. 21 - Two point charges q1 and q2 are held in place 4.50...Ch. 21 - CP Strength of the Electric Force. Imagine two...Ch. 21 - CP Two tiny spheres of mass 6.80 mg carry charges...Ch. 21 - CP Consider a model of a hydrogen atom in which an...Ch. 21 - The earth has a downward-directed electric field...Ch. 21 - CP A proton is projected into a uniform electric...Ch. 21 - A small object with mass m, charge q, and initial...Ch. 21 - CALC Positive charge Q is distributed uniformly...Ch. 21 - In a region where there is a uniform electric...Ch. 21 - A negative point charge q1 = 4.00 nC is on the...Ch. 21 - CALC Positive charge Q is distributed uniformly...Ch. 21 - A uniformly charged disk like the disk in Fig....Ch. 21 - CP A small sphere with mass m carries a positive...Ch. 21 - CALC Negative charge Q is distributed uniformly...Ch. 21 - CALC A semicircle of radius a is in the first and...Ch. 21 - Two 1.20-m non- conducting rods meet at a right...Ch. 21 - Two very large parallel sheets are 5.00 cm apart....Ch. 21 - Repeat Problem 21.88 for the case where sheet B is...Ch. 21 - Two very large horizontal sheets are 4.25 cm apart...Ch. 21 - CP A thin disk with a circular hole at its center,...Ch. 21 - DATA CP Design of an Inkjet Printer. Inkjet...Ch. 21 - DATA Two small spheres, each carrying a net...Ch. 21 - DATA Positive charge Q is distributed uniformly...Ch. 21 - Three charges are placed as shown in Fig. P21.95....Ch. 21 - Two charges are placed as shown in Fig. P21.96....Ch. 21 - CALC Two thin rods of length L lie along the...Ch. 21 - BIO ELECTRIC BEES. Flying insects such as bees may...Ch. 21 - BIO ELECTRIC BEES. Flying insects such as bees may...Ch. 21 - After one bcc left a flower with a positive...Ch. 21 - In a follow-up experiment, a charge of +40 pC was...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk(*) desig...
Cosmic Perspective Fundamentals
Find the angular position of the second-order bright fringe in a double-slit system whose slit spacing is 1.5 m...
Essential University Physics: Volume 2 (3rd Edition)
Which metric unit (km, m, cm, or mm) would you use to measure the following?
8. Thickness of a saw blade
Applied Physics (11th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
36. || A refrigerator’s freezer compartment is set at –10°C; the kitchen is 24°C. What is the theoretical minim...
College Physics: A Strategic Approach (4th Edition)
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- aA plastic rod of length = 24.0 cm is uniformly charged with a total charge of +12.0 C. The rod is formed into a semicircle with its center at the origin of the xy plane (Fig. P24.34). What are the magnitude and direction of the electric field at the origin? Figure P24.34arrow_forwardA circular ring of charge with radius b has total charge q uniformly distributed around it. What is the magnitude of the electric field at the center of the ring? (a) 0 (b) keq/b2 (c) keq2/b2 (d) keq2/b (e) none of those answersarrow_forwardWhy is the following situation impossible? A solid copper sphere of radius 15.0 cm is in electrostatic equilibrium and carries a charge of 40.0 nC. Figure P24.30 shows the magnitude of the electric field as a function of radial position r measured from the center of the sphere. Figure P24.30arrow_forward
- The electric field 10.0 cm from the surface of a copper ball of radius 5.0 cm is directed toward the ball's center and has magnitude 4.0102 N/C. How much charge is on the surface of the ball?arrow_forwardTwo long, thin rods each have linear charge density = 6.0 C/m and lie parallel to each other, separated by 20.0 cm as shown in Figure P25.32. Determine the magnitude and direction of the net electric field at point P, a distance of 15.0 cm directly above the right rod. Figure P25.32arrow_forwardA solid conducting sphere of radius 2.00 cm has a charge 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge −4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.arrow_forward
- Assume the magnitude of the electric field on each face of the cube of edge L = 1.00 m in Figure P23.32 is uniform and the directions of the fields on each face are as indicated. Find (a) the net electric flux through the cube and (b) the net charge inside the cube. (c) Could the net charge he a single point charge? Figure P23.32arrow_forwardIn nuclear fission, a nucleus of uranium-238, which contains 92 protons, can divide into two smaller spheres, each having 46 protons and a radius of 5.90 1015 m. What is the magnitude of the repulsive electric force pushing the two spheres apart?arrow_forwardA point charge of 4.00 nC is located at (0, 1.00) m. What is the x component of the electric field due to the point charge at (4.00, 2.00) m? (a) 1.15 N/C (b) 0.864 N/C (c) 1.44 N/C (d) 1.15 N/C (e) 0.864 N/Carrow_forward
- Two solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB = 0 (b) EA EB 0 (c) EA = EB 0 (d) 0 EA EB (e) 0 = EA EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? Choose from the same possibilities as in part (i).arrow_forwardA thin, square, conducting plate 50.0 cm on a side lies in the xy plane. A total charge of 4.00 108 C is placed on the plate. Find (a) the charge density on each face of the plate, (b) the electric field just above the plate, and (c) the electric field just below the plate. You may assume the charge density is uniform.arrow_forwardThree identical charges (q = 5.0 C.) lie along a circle of radius 2.0 m at angles of 30, 150, and 270, as shown in Figure P15.33 (page 524). What is the resultant electric field at the center of the circle? Figure P15.33arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY