Concept explainers
(a)
Interpretation:
The effect on the rate of pancreatic amylase catalyzed reaction when pH decreases from 7 to 4 should be determined.
Concept Introduction:
The enzymes are considered as the catalyst for the biochemical reaction. They involve in the biochemical reactions to speed them up but again regenerate at the end of the reaction or process. The Lock and Key model was purposed to explain the reactivity of enzymes. It states that each enzyme has certain active sites that can only allow the bonding of certain subtract molecules.
(b)
Interpretation:
The effect on the rate of pancreatic amylase catalyzed reaction when pH increases from 7 to 9 should be determined.
Concept Introduction:
The enzymes are considered as the catalyst for the biochemical reaction. They involve in the biochemical reactions to speed them up but again regenerate at the end of the reaction or process. The Lock and Key model was purposed to explain the reactivity of enzymes. It states that each enzyme has certain active sites that can only allow the bonding of certain subtract molecules.
(c)
Interpretation:
The effect on the rate of pancreatic amylase catalyzed reaction when temperature decreases from 37°C to 28°C should be determined.
Concept Introduction:
The enzymes are considered as the catalyst for the biochemical reaction. They involve in the biochemical reactions to speed them up but again regenerate at the end of the reaction or process. The Lock and Key model was purposed to explain the reactivity of enzymes. It states that each enzyme has certain active sites that can only allow the bonding of certain subtract molecules.
(d)
Interpretation:
The effect on the rate of pancreatic amylase catalyzed reaction when temperature increases from 37°C to 50°C should be determined.
Concept Introduction:
The enzymes are considered as the catalyst for the biochemical reaction. They involve in the biochemical reactions to speed them up but again regenerate at the end of the reaction or process. The Lock and Key model was purposed to explain the reactivity of enzymes. It states that each enzyme has certain active sites that can only allow the bonding of certain subtract molecules.
Want to see the full answer?
Check out a sample textbook solutionChapter 21 Solutions
General, Organic, & Biological Chemistry
- Show work. don't give Ai generated solution. Don't copy the answer anywherearrow_forward6. Consider the following exothermic reaction below. 2Cu2+(aq) +41 (aq)2Cul(s) + 12(aq) a. If Cul is added, there will be a shift left/shift right/no shift (circle one). b. If Cu2+ is added, there will be a shift left/shift right/no shift (circle one). c. If a solution of AgNO3 is added, there will be a shift left/shift right/no shift (circle one). d. If the solvent hexane (C6H14) is added, there will be a shift left/shift right/no shift (circle one). Hint: one of the reaction species is more soluble in hexane than in water. e. If the reaction is cooled, there will be a shift left/shift right/no shift (circle one). f. Which of the changes above will change the equilibrium constant, K?arrow_forwardShow work. don't give Aiarrow_forward
- Show work with explanation needed. don't give Ai generated solutionarrow_forwardShow work with explanation needed. Don't give Ai generated solutionarrow_forward7. Calculate the following for a 1.50 M Ca(OH)2 solution. a. The concentration of hydroxide, [OH-] b. The concentration of hydronium, [H3O+] c. The pOH d. The pHarrow_forward
- A first order reaction is 46.0% complete at the end of 59.0 minutes. What is the value of k? What is the half-life for this reaction? HOW DO WE GET THERE? The integrated rate law will be used to determine the value of k. In [A] [A]。 = = -kt What is the value of [A] [A]。 when the reaction is 46.0% complete?arrow_forward3. Provide the missing compounds or reagents. 1. H,NNH КОН 4 EN MN. 1. HBUCK = 8 хно Panely prowseful kanti-chuprccant fad, winddively, can lead to the crading of deduc din-willed, tica, The that chemooices in redimi Грин. " like (for alongan Ridovi MN نيا . 2. Cl -BuO 1. NUH 2.A A -BuOK THE CF,00,H Ex 5)arrow_forward2. Write a complete mechanism for the reaction shown below. NaOCH LOCH₁ O₂N NO2 CH₂OH, 20 °C O₂N NO2arrow_forward
- 4. Propose a synthesis of the target molecules from the respective starting materials. a) b) LUCH C Br OHarrow_forwardThe following mechanism for the gas phase reaction of H2 and ICI that is consistent with the observed rate law is: step 1 step 2 slow: H2(g) +ICI(g) → HCl(g) + HI(g) fast: ICI(g) + HI(g) → HCl(g) + |2(g) (1) What is the equation for the overall reaction? Use the smallest integer coefficients possible. If a box is not needed, leave it blank. + → + (2) Which species acts as a catalyst? Enter formula. If none, leave box blank: (3) Which species acts as a reaction intermediate? Enter formula. If none, leave box blank: (4) Complete the rate law for the overall reaction that is consistent with this mechanism. (Use the form k[A][B]"..., where '1' is understood (so don't write it) for m, n etc.) Rate =arrow_forwardPlease correct answer and don't use hand rating and don't use Ai solutionarrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax