EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 9780100793439
Author: KALPAKJIAN
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 63QTP
With a carbide tool, the temperature in a cutting operation is measured as 1200°F when the speed is 300 ft/min and the feed is 0.002 in./rev. What is the approximate temperature if the speed is doubled? What speed is required to lower the maximum cutting temperature to 900°F?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Note: Read the question carefully and give me right solutions according to the question.
In orthogonal cutting of steel tube of 150 mm diameter and 2 mm thick, the cutting force was 130 kg and feed force was 35 kg for chip thickness of 0.3mm. The orthogonal cut was taken at 60 meter per minute with a feed of 0.14 mm/rev. If the back rack angle of the cutting tool was - 8 o (minus 8 degree), then calculate the shear strain and strain energy per unit volume.
In a turning operation, cutting speed =200 m/min; feed = 0.25mm mm/rev, and depth of cut = 4.00mm Thermal diffusivity of the work material = 20m mm^2/s and volumetric specific heat =3.5(10^ -3 )J/mm^ 3 -C If the temperature increase above ambient temperature (20degreesC) is the angle measured by a tool-chip thermocouple to be 700degreesC, determine the specific energy for the work material in this operation.
A mild steel specimen of Initial diameter of
51.5 mm is turned to final diameter of 48 mm
for an initial length of 151 mm on a lathe
machine.
Using the given data find the following.
(i) Feed of 0.1 mm/rev & Depth of cut is 0.5
mm
(ii) During machining the tool's approach
length is 7 mm, over run length is 2mm
(iii) Total time required to complete the
turning operation is 48.8 minutes
(a) Find number of passes to finish the entire
turning operation
(b) The actual length of the turning operation
in mm (
(c)The time required to complete one single
turning operation in minutes
(d) Spindle speed in rpm
Chapter 21 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 21 - Explain why continuous chips are not necessarily...Ch. 21 - Name the factors that contribute to the formation...Ch. 21 - What is the cutting ratio? Is it always less than...Ch. 21 - Explain the difference between positive and...Ch. 21 - Explain how a dull tool can lead to negative rake...Ch. 21 - Comment on the role and importance relief angle.Ch. 21 - Explain the difference between discontinuous chips...Ch. 21 - Why should we be interested in the magnitude of...Ch. 21 - What are the differences between orthogonal and...Ch. 21 - What is a BUE? Why does it form?
Ch. 21 - Is there any advantage to having a built-up edge...Ch. 21 - What is the function of chip breakers? How do they...Ch. 21 - Identify the forces involved in a cutting...Ch. 21 - Explain the characteristics of different types of...Ch. 21 - List the factors that contribute to poor surface...Ch. 21 - Explain what is meant by the term machinability...Ch. 21 - What is shaving in machining? When would it be...Ch. 21 - List reasons that machining operations may be...Ch. 21 - Are the locations of maximum temperature and...Ch. 21 - Is material ductility important for machinability?...Ch. 21 - Explain why studying the types of chips produced...Ch. 21 - Prob. 22QLPCh. 21 - Tool life can be almost infinite at low cutting...Ch. 21 - Explain the consequences of allowing temperatures...Ch. 21 - The cutting force increases with the depth of cut...Ch. 21 - Why is it not always advisable to increase the...Ch. 21 - What are the consequences if a cutting tool chips?Ch. 21 - What are the effects of performing a cutting...Ch. 21 - Prob. 29QLPCh. 21 - Prob. 30QLPCh. 21 - Prob. 31QLPCh. 21 - Prob. 32QLPCh. 21 - Comment on your observations regarding Figs. 21.1...Ch. 21 - Prob. 34QLPCh. 21 - Comment on your observations regarding the...Ch. 21 - Why does the temperature in cutting depend on the...Ch. 21 - You will note that the values of a and b in Eq....Ch. 21 - Prob. 38QLPCh. 21 - Prob. 39QLPCh. 21 - Explain whether it is desirable to have a high or...Ch. 21 - The Taylor tool-life equation is directly...Ch. 21 - Prob. 42QLPCh. 21 - Why are tool temperatures low at low cutting...Ch. 21 - Can high-speed machining be performed without the...Ch. 21 - Prob. 45QLPCh. 21 - Prob. 46QLPCh. 21 - State whether or not the following statements are...Ch. 21 - Let n = 0.5 and C = 400 in the Taylor equation for...Ch. 21 - Assume that, in orthogonal cutting, the rake angle...Ch. 21 - Prob. 50QTPCh. 21 - Prob. 51QTPCh. 21 - Using trigonometric relationships, derive an...Ch. 21 - An orthogonal cutting operation is being carried...Ch. 21 - Prob. 54QTPCh. 21 - Prob. 55QTPCh. 21 - Prob. 56QTPCh. 21 - Show that, for the same shear angle, there are two...Ch. 21 - With appropriate diagrams, show how the use of a...Ch. 21 - In a cutting operation using a 5 rake angle, the...Ch. 21 - For a turning operation using a ceramic cutting...Ch. 21 - In Example 21.3, if the cutting speed V is...Ch. 21 - Using Eq. (21.30), select an appropriate feed for...Ch. 21 - With a carbide tool, the temperature in a cutting...Ch. 21 - The following flank wear data were collected in a...Ch. 21 - The following data are available from orthogonal...Ch. 21 - Prob. 66QTPCh. 21 - Design an experimental setup whereby orthogonal...Ch. 21 - Describe your thoughts on whether chips produced...Ch. 21 - Recall that cutting tools can be designed so that...Ch. 21 - Recall that the chip-formation mechanism also can...Ch. 21 - Prob. 73SDPCh. 21 - Describe your thoughts regarding the recycling of...Ch. 21 - List products that can be directly produced from...Ch. 21 - Obtain a wood planer and some wood specimens. Show...Ch. 21 - It has been noted that the chips from certain...Ch. 21 - As we have seen, chips carry away the majority of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A mild steel specimen of Initial diameter of 53.5 mm is turned to final diameter of 47 mm for an initial length of 154 mm on a lathe machine. Using the given data find the following. (i) Feed of 0.4 mm/rev & Depth of cut is 0.5 mm (ii) During machining the tool's approach length is 5 mm, over run length is 2mm (iii) Total time required to complete the turning operation is 59.6 minutesarrow_forwardA mild steel specimen of Initial diameter of 53.5 mm is turned to final diameter of 47 mm for an initial length of 154 mm on a lathe machine. Using the given data find the following. (i) Feed of 0.4 mm/rev & Depth of cut is 0.5 mm (ii) During machining the tool's approach length is 5 mm, over run length is 2mm (iii) Total time required to complete the turning operation is 59.6 minutes (a) Find number of passes to finish the entire turning operation ( (b) The actual length of the turning operation in mm ('arrow_forwardcalculate the time taken to complete a 300 mm long cut on an aluminium plate using a 75 mm diameter slab mill with 6 teeth.arrow_forward
- 34 - The outside diameter of a cylinder made of titanium alloy is to be turned. The starting diameter is 400 mm and the length is 1100 mm. The feed is 0.35 mm/rev and the depth of cut is 2.5 mm. The cut will be made with a cemented carbide cutting tool whose Taylor tool life parameters are: n= 0.24 and C-450. Units for the Taylor equation are min for tool life and m/min for cutting speed. Compute the cutting speed that will allow the tool life to be just equal to the cutting time for this part. vT" = C . AD,L Tm %3D fv a) 325.8 m /min b) 275.8 m/min 226.6 m/min d) O 187.9 m/minarrow_forward.cutting speed is 9m/min. The return time to cutting time is 1:4 and the feed is 3mm Q.4 (i) Find the time required for taking a cemplete cut on a plate 600 × 900 mm", if the cutting speed is 9m/min. The return time to cutting time is 1:4 and the feed is 3mm for the shaper. The clearance at each end is 75 mm. (11) A hole of 30 mm diameter and 75 mm depth is to be drilled. The feed is 1.3 mm/rev and the cutting speed is 62 m/min. Assuming tool approach and tool over travel as 6 mm. Calculate : (a) Cutting time and (b) Material removal rate Q.5 Write short note on the following - (i) Up milling and down milling processes (ii) Balancing of grinding wheels (iii) Gear hobbing ittp3.7 w w w.ItuommC.comarrow_forwardA mild steel specimen of Initial diameter of 30.5 mm is turned to final diameter of 27 mm for an initial length of 153 mm on a lathe machine. Using the given data find the following. (i) Feed of 0.4 mm/rev & Depth of cut is 0.5 mm (ii)During machining the tool's approach length is 5 mm, over run length is 2mm (iii) Time required to complete one single turning operation is 3.5 minutes (a)Find number of passes to finish the entire turning operation (b) Total time required to complete the turning operation in minutesarrow_forward
- A mild steel specimen of Initial diameter of 30.5 mm is turned to final diameter of 27 mm for an initial length of 153 mm on a lathe machine. Using the given data find the following. (i) Feed of 0.4 mm/rev & Depth of cut is 0.5 mm (ii)During machining the tool's approach length is 5 mm, over run length is 2mm (iii) Time required to complete one single turning operation is 3.5 minutes (c) Spindle speed in in rpm (= (d) Cutting speed in m/minutes(=arrow_forwardA mild steel specimen of Initial diameter of 32.5 mm is turned to final diameter of 25 mm for an initial length of 154 mm on a lathe machine. Using the given data find the following. (i) Feed of 0.3 mm/rev & Depth of cut is 0.5 mm (ii)During machining the tool's approach length is 6 mm, over run length is 3mm (iii) Time required to complete one single turning operation is 2.3 minutes (a)Find number of passes to finish the entire turning operation (b) Total time required to complete the turning operation in minutes (c) Spindle speed in in rpm (d) Cutting speed in m/minutesarrow_forwardPuanlar) 16 The outside diameter of a cylinder made of titanium alloy is to be turned. The starting diameter is 400 mm and the length is 1100 mm. The feed is 0.35 mm/rev and the depth of cut is 2.5 mm. The cut will be made with a cemented carbide cutting tool whose Taylor tool life parameters are: n= 0.24 and C=450. Units for the Taylor equation are min for tool life and m/min for cutting speed. Compute the cutting speed that will allow the tool life to be just equal to the cutting time for this part. V vT" = C. %3D Ce Tm 1. %3D 19 fv 25 31 37 43 49 187.9 m/min b) 325.8 m /min 275.8 m/min d) 226.6 m/minarrow_forward
- 2 1.63 With a carbide tool, the temperature in a cutting operation is measured as 650K when the speed and the feed is 0.05mm/rev. W hat is the approximate temperature if the speed is doubled? W hat speed is required to lower the maximum cutting temperature to 480K?arrow_forward2) In an orthogonal cutting operation, the cutting tool has a rake angle = 20°. The chip thickness before the cut = 0.25 mm. If the cutting force and thrust force are measured during an orthogonal cutting operation with values, Fc = 1450 N and Ft = 1990 N. The width of the orthogonal cutting operation w = 2.5 mm. the friction angle B is = 79.91° Determine: The Shear Angle The Shear Strain The Shear Strength of the material The Force of Frictionarrow_forwardTurning Operation In a production turning operation, the foreman has decreed that a single pass must be completed on the cylindrical workpiece in 4.8 min. The piece is 400 mm long and 150 mm in diameter. Using a feed = 0.43 mm/rev and a depth of cut = 4.0 mm, what cutting speed must be used to meet this machining time requirement? Hint: Re-arrange the Tm equation to find v in m/min Tm= T.DO.L v.f 1.522arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Hand Tools; Author: UCI Media;https://www.youtube.com/watch?v=4o0tqF0jDdo;License: Standard Youtube License