DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 2P
For problem 1, suppose you selected a speed of 145 sfpm and a feed of 0.015 in. per revolution. The workpiece is 4 in. in diameter.
- What is the input rpm?
- What is the MRR?
- What is the cutting time for a 6-in. cut?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A two-spindle drill cuts two holes at the same time, one 1/2 inch and one 3/4 inch. The workpiece is 1.0 inches thick. Both drills have point angles of 118 degrees and the cutting speed for the material is 300 ft/min. The rotational speed of each drill can be set individually but the feed rate for both holes must be set to the same value because they move together into the material. The feed rate is set so that the total metal removal rate of both drills combined does not exceed 1.50 in3/min. Determine (a) maximum feed rate (in/min) that can be used, (b) individual feeds (in/rev) for each hole, and (c) cutting time for the operation.
Please answer all parts
Two identical cylindrical jobs are turned using (a) a round nosed tool of nose radius 2 mm and (b) a sharp corner tool having principal cutting edge angle = 45° and auxiliary cutting edge angle = 10° If the operation is carried out of the teed of 0.08 mm/rev will
Find the height at micro irregularities on the machined surfaces (in mm) in the two cases.
Chapter 21 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 21 - Why has the metal-cutting process resisted...Ch. 21 - What variables must be considered in understanding...Ch. 21 - Which of the seven basic chip formation processes...Ch. 21 - How is feed related to speed in the machining...Ch. 21 - Before you select speed and feed for a machining...Ch. 21 - Milling has two feeds. What are they, and which...Ch. 21 - What is the fundamental mechanism of chip...Ch. 21 - What is the difference between oblique machining...Ch. 21 - What are the implications of Figure 21.13, given...Ch. 21 - Note that the units for the approximate equation...
Ch. 21 - For orthogonal machining, the cutting edge radius...Ch. 21 - How do the magnitude of the strain and strain rate...Ch. 21 - Why is titanium such a difficult metal to machine?...Ch. 21 - Explain why you get segmented or discontinuous...Ch. 21 - Why is metal cutting shear stress such an...Ch. 21 - Which of the three cutting forces in oblique...Ch. 21 - How is the energy in a machining process typically...Ch. 21 - Where does the energy consumed in metal cutting...Ch. 21 - What are two ways of estimating the primary...Ch. 21 - What are the three different ways to perform...Ch. 21 - Why does the cutting force Fc increase with...Ch. 21 - Why doesnt the cutting force Fc increase with...Ch. 21 - Prob. 23RQCh. 21 - How does the selection of the machining parameters...Ch. 21 - Suppose you had a machining operation (boring)...Ch. 21 - Make a sketch like that shown in Figure 21.1 with...Ch. 21 - Show how you would do near orthogonal machining in...Ch. 21 - Can you do orthogonal machining on a shaper or...Ch. 21 - What process and material combination would yield...Ch. 21 - What is meant by the statement that machining...Ch. 21 - Prob. 31RQCh. 21 - Figure 21.4 provides suggested cutting speeds and...Ch. 21 - For problem 1, suppose you selected a speed of 145...Ch. 21 - If the cutting forces is 1000 lb calculate the...Ch. 21 - Explain how you would estimate the cutting force...Ch. 21 - For a turning operation, you have selected a...Ch. 21 - For a slab milling operation using a...Ch. 21 - The power required to machine metal is related to...Ch. 21 - In order to drill a hole in the material described...Ch. 21 - Suppose you have the data in Table 21.A obtained...Ch. 21 - Calculate the horsepower that a process is going...Ch. 21 - Explain how you would estimate the cutting force...Ch. 21 - Derive equations for F and N using the circular...Ch. 21 - Prob. 14PCh. 21 - Prob. 15PCh. 21 - A manufacturing engineer needs an estimate of the...Ch. 21 - Using Figure 21.4 for input data, determine the...Ch. 21 - Estimate the horsepower needed to remove metal at...Ch. 21 - For a turning process, the horsepower required was...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
A turbine is supplied with 0.6 m3/s of water from a 0.3 m diameter pipe; the discharge pipe has a 0.4 m diamete...
Fox and McDonald's Introduction to Fluid Mechanics
49. The maximum radius (R) a falling liquid drop can have without breaking apart is given by the equation , whe...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Modified coefficient of performance and power input for clean condition.
Introduction to Heat Transfer
The moment of the force F about an axis extending between A and C.
Engineering Mechanics: Statics & Dynamics (14th Edition)
Three rigid bodies, 2,3, and 4, are connected by four springs as shown in the figure. A horizontal force of 1,0...
Introduction To Finite Element Analysis And Design
What parts are included in the vehicle chassis?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Calculate spindle RPM and machining time for cutting a 1.5" diameter 4" long at 225 SFPM using a feed rate of 0.004".arrow_forwardpls solvearrow_forwardA 0.4-inch diameter bit is used in a vertical or vertical drill that operates at 300 rpm. If the feed is 0.005 in / rev, what is the MRR? What is the MRR if the drill diameter is doubled? What is the power required in the drill if the material is an annealed AISI 1080?arrow_forward
- A motorised metal guillotine machine is required to cut 45 mm diameter hole ina plate of 20 mm thickness at rate of 35 holes per minute. It requires a torqueof 7 Nm for an area of hole in mm?. If the cutting takes 1/10 of a second andthe speed of its flywheel varies from 165 rpm to 145 rpm, calculate:1.Energy required to cut a hole.2.Energy required for cutting work per second.3.Maximum fluctuation of energy of the flywheel.4.Mass of the flywheel having radius of gyration of 1.5 m.arrow_forwardFigure and table given below shows the design details of a taper turning operation with a cutting speed of 22 m/ minute, feed 0.2 mm/ revolution; Depth of cut of 0.5 mm. Using the given data find the following . (e) Time for single pass "Tfinal" in minutesarrow_forwardA step by step answer pleasearrow_forward
- Please need within 30 min Thank you.arrow_forwardExpert Q&A Done The top surface of a rectangular workpart is machined using a peripheral milling operation. The workpart is 735 mm long by 50 mm wide by 95 mm thick. The milling cutter, which is 60 mm in diameter and has five teeth, overhangs the width of the part equally on both sides. Cutting speed = 80 m/min, chip load = 0.30 mm/tooth, and depth of cut = 7.5 mm. (a) Determine the time required to make one pass across the surface, given that the setup and machine settings provide an approach distance of 5 mm before actual cutting begins and an overtravel distance of 25 mm after 1.2 9. 20 65 73 actual cutting has finished v in seconds. (b) What is the maximum material 3.9 239 removal rate during the cut v in mm3/sec? 0.127 5arrow_forwardFor the operation of straight turning in a lathe machine, the diameter of the workpiece is 80 mm, the length is 0.12 m, the cutting speed is 80 m / min, the feed is 0.5 mm / rev and the depth of cut is 0.002 m . Find the material removing rate and the time of machining.arrow_forward
- A NC lathe cuts two passes across a cylindrical workpiece under automatic cycle. The operator loads and unloads the machine. The starting diameter of the work is 3.00 in and its length = 10 in. The work cycle consists of the following steps (with element times given in parentheses where applicable): 1 - Operator loads part into machine, starts cycle (1.00 min); 2 - NC lathe positions tool for first pass (0.10 min); 3 - NC lathe turns first pass (time depends on cutting speed); 4 - NC lathe repositions tool for second pass (0.4 min); 5 - NC lathe turns second pass (time depends on cutting speed); and 6 - Operator unloads part and places in tote pan (1.00 min). In addition, the cutting tool must be periodically changed. This tool change time takes 1.00 min. The feed rate = 0.007 in/rev and the depth of cut for each pass = 0.100 in. The cost of the operator and machine = $39/hr and the tool cost = $2.00/cutting edge. The applicable Taylor tool life equation has parameters: n = 0.26 and…arrow_forwardNonearrow_forwardAn end milling operation is carried out along a straight line path that is 325 mm long. The cut is in a direction parallel to the x‑axis on a CNC machining center. Cutting speed = 30 m/min, and chip load = 0.06 mm. The end milling cutter has two teeth and its diameter = 16.0 mm. The x‑axis uses a DC servomotor connected directly to a leadscrew whose pitch = 6.0 mm. The optical encoder emits 400 pulses per revolution of the screw. Determine (a) feed rate during the cut, (b) rotational speed of the motor, and (c) pulse rate of the encoder at the feed rate indicated.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License