
DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 21, Problem 14P
To determine
The force
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
6.76 A wind turbine is operating in a 12 m/s wind that has a den-
sity of 1.2 kg/m³. The diameter of the turbine silhouette is 4 m.
The constant-pressure (atmospheric) streamline has a diameter
of 3 m upstream of the windmill and 4.5 m downstream. Assume
that the velocity distributions are uniform and the air is incom-
pressible. Determine the force on the wind turbine.
m
P = Patm
4
Vz
4m
4 m
Fx.
Problem 6.76
For the position shown in the figure the spring is unstretched. The spring constant k, is designed such that after the system is released from rest, the speed of the mass is zero just as the 0.6 slug mass touches the floor. Find the spring constant, k and the maximum speed of block A and the location (distance above floor) where this occurs.
||!
Sign in
MMB241 - Tutorial L9.pd X PDF MMB241 - Tutorial L10.pX DE MMB241 - Tutorial L11.p x PDF Lecture W12 - Work and X
File C:/Users/KHULEKANI/Desktop/mmb241/MMB241%20-%20Tutorial%20L11.pdf
PDE Lecture W11 - Power and X
Draw
Alla | Ask Copilot
++
3
of 3
| D
6. If the 50-kg load A is hoisted by motor M so that the load has a constant velocity of 1.5
m/s, determine the power input to the motor, which operates at an efficiency € = 0.8.
1.5 m/s
2
7. The sports car has a mass of 2.3 Mg, and while it is traveling at 28 m/s the driver causes
it to accelerate at 5m/s². If the drag resistance on the car due to the wind is FD= 0.3v²N,
where v is the velocity in m/s, determine the power supplied to the engine at this instant.
The engine has a running efficiency of P = 0.68.
8. If the jet on the dragster supplies a constant thrust of T-20 kN, determine the power
generated by the jet as a function of time. Neglect drag and rolling resistance, and the loss
of fuel. The dragster has a mass of 1…
Chapter 21 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 21 - Why has the metal-cutting process resisted...Ch. 21 - What variables must be considered in understanding...Ch. 21 - Which of the seven basic chip formation processes...Ch. 21 - How is feed related to speed in the machining...Ch. 21 - Before you select speed and feed for a machining...Ch. 21 - Milling has two feeds. What are they, and which...Ch. 21 - What is the fundamental mechanism of chip...Ch. 21 - What is the difference between oblique machining...Ch. 21 - What are the implications of Figure 21.13, given...Ch. 21 - Note that the units for the approximate equation...
Ch. 21 - For orthogonal machining, the cutting edge radius...Ch. 21 - How do the magnitude of the strain and strain rate...Ch. 21 - Why is titanium such a difficult metal to machine?...Ch. 21 - Explain why you get segmented or discontinuous...Ch. 21 - Why is metal cutting shear stress such an...Ch. 21 - Which of the three cutting forces in oblique...Ch. 21 - How is the energy in a machining process typically...Ch. 21 - Where does the energy consumed in metal cutting...Ch. 21 - What are two ways of estimating the primary...Ch. 21 - What are the three different ways to perform...Ch. 21 - Why does the cutting force Fc increase with...Ch. 21 - Why doesnt the cutting force Fc increase with...Ch. 21 - Prob. 23RQCh. 21 - How does the selection of the machining parameters...Ch. 21 - Suppose you had a machining operation (boring)...Ch. 21 - Make a sketch like that shown in Figure 21.1 with...Ch. 21 - Show how you would do near orthogonal machining in...Ch. 21 - Can you do orthogonal machining on a shaper or...Ch. 21 - What process and material combination would yield...Ch. 21 - What is meant by the statement that machining...Ch. 21 - Prob. 31RQCh. 21 - Figure 21.4 provides suggested cutting speeds and...Ch. 21 - For problem 1, suppose you selected a speed of 145...Ch. 21 - If the cutting forces is 1000 lb calculate the...Ch. 21 - Explain how you would estimate the cutting force...Ch. 21 - For a turning operation, you have selected a...Ch. 21 - For a slab milling operation using a...Ch. 21 - The power required to machine metal is related to...Ch. 21 - In order to drill a hole in the material described...Ch. 21 - Suppose you have the data in Table 21.A obtained...Ch. 21 - Calculate the horsepower that a process is going...Ch. 21 - Explain how you would estimate the cutting force...Ch. 21 - Derive equations for F and N using the circular...Ch. 21 - Prob. 14PCh. 21 - Prob. 15PCh. 21 - A manufacturing engineer needs an estimate of the...Ch. 21 - Using Figure 21.4 for input data, determine the...Ch. 21 - Estimate the horsepower needed to remove metal at...Ch. 21 - For a turning process, the horsepower required was...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q | Sign in PDE Lecture W09.pdf PDF MMB241 - Tutorial L9.pdi X PDF MMB241 - Tutorial L10.p X PDF MMB241 - Tutorial L11.p X Lecture W12-Work and X + File C:/Users/KHULEKANI/Desktop/mmb241/Lecture%20W12%20-%20Work%20and%20Energy.pdf ||! Draw | IA | a | Ask Copilot Class Work + 33 of 34 D Question 1 The engine of a 3500-N car is generating a constant power of 50 hp (horsepower) while the car is traveling up the slope with a constant speed. If the engine is operating with an efficiency of € 0.8, determine the speed of the car. Neglect drag and rolling resistance. Use g 9.81 m/s² and 1 hp = 745.7 W. 10 го Question 2 A man pushes on a 60-N crate with a force F. The force is always directed downward at an angle of 30° from the horizontal, as shown in the figure. The magnitude of the force is gradually increased until the crate begins to slide. Determine the crate's initial acceleration once it starts to move. Assume the coefficient of static friction is μ = 0.6, the coefficient of kinetic…arrow_forwardstate is Derive an expression for the volume expansivity of a substance whose equation of RT P = v-b a v(v + b)TZ where a and b are empirical constants.arrow_forwardFor a gas whose equation of state is P(v-b)=RT, the specified heat difference Cp-Cv is equal to which of the following (show all work): (a) R (b) R-b (c) R+b (d) 0 (e) R(1+v/b)arrow_forward
- of state is Derive an expression for the specific heat difference of a substance whose equation RT P = v-b a v(v + b)TZ where a and b are empirical constants.arrow_forwardTemperature may alternatively be defined as T = ди v Prove that this definition reduces the net entropy change of two constant-volume systems filled with simple compressible substances to zero as the two systems approach thermal equilibrium.arrow_forwardUsing the Maxwell relations, determine a relation for equation of state is (P-a/v²) (v−b) = RT. Os for a gas whose av Tarrow_forward
- (◉ Homework#8arrow_forwardHomework#8arrow_forwardBox A has a mass of 15 kilograms and is attached to the 20 kilogram Box B using the cord and pulley system shown. The coefficient of kinetic friction between the boxes and surface is 0.2 and the moment of inertia of the pulley is 0.5 kg * m^ 2. After 2 seconds, how far do the boxes move? A бро Barrow_forwardBox A has a mass of 15 kilograms and is attached to the 20 kilogram Box B using the cord and pulley system shown. The coefficient of kinetic friction between the boxes and surface is 0.2 and the moment of inertia of the pulley is 0.5 kg * m^2. Both boxes are 0.25 m long and 0.25 m high. The cord is attached to the bottom of Box A and the middle of box B. After 2 seconds, how far do the boxes move? A From бро Barrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY