Concept explainers
To determine: Whether the given results support the hypothesis that the virus is adapting to host defenses.
Introduction: Human Immunodeficiency Virus (HIV) is a group of retroviruses that are sexually transmitted from one to another. It causes a disease that lead to life-threatening infections called AIDS. Here, the immune system fails or weakens due to viral infection and is accompanied with the development of many infections. Certain proteins called Human Leukocyte Antigens (HLA) are produced and displayed by our cells that act as a marker for the identification of unusual invaders in the body. Each unique marker is produced for the determination of self-cells versus the invaders by the immune system.
Trending nowThis is a popular solution!
Chapter 20 Solutions
Bundle: Biology: The Unity and Diversity of Life, Loose-leaf Version, 14th + LMS Integrated for MindTap Biology, 2 terms (12 months) Printed Access Card
- Serum from individuals with high levels of antibody to SARS-CoV2 has been used to treat patients with severe COVID-19. What is ONE way (there are several) that passive immunization with the antibody to the virus could help these patients? HINT: think about what opsonization with antibody could do for the innate immune response.arrow_forwardThe envelope protein gp120 (Glycoprotein 120) is required for the attachment of the HIV virus to CD 4 receptors of target host cells. Identify the immune cells that consist of CD 4 receptors?arrow_forwardMammalian Toll-like receptors are activated by many different pathogen-associated molecular patterns. As a family, TLRs can recognize PAMPs associated with a broad array of different pathogens, including bacteria, viruses, and fungi. Patients with a specific susceptibility to herpesvirus infections have a defect in their ability to respond to viral nucleic acids using TLR-3, TLR-7, or TLR-9, even though these proteins are expressed in the patients’ cells. Analysis of the TLRs in macrophages and dendritic cells from these patients would likely show which of the arrangements in Figure below?arrow_forward
- Human genome-wide genetic association (GWAS) studies have identified several genetic polymorphisms that contribute to HIV control, and the rate of disease progression to AIDS. Which two immune cell subsets are implicated by these data as important regulators of HIV replication and the rate of disease progression?arrow_forwardWhy are mutations in the spike protein of special interest in regard to vaccine evasion? Because the spike protein is the target of COVID-19 vaccines. Because mutations in the spike protein always are in the receptor-binding domain (RBD). Because spike protein mutations are associated with increased virus transmission. Because the gene for the spike protein mutates faster than the other genes. Because spike protein mutations are associated with increased disease severity.arrow_forward1) 286 individuals were newly diagnosed with Human Immunodeficiency Virus in 2018 in Minnesota. Of these individuals, 76% were male. HIV is an enveloped, ssRNA virus_ Baltimore classification VI. This virus targets CD4+ cells. CD4 refers to a glycoprotein which serves as a co-receptor for T-cells, located on T-helper and T-reg immune cells. a) What part of the HIV virus allows for specificity to CD4+ cells?arrow_forward
- One strategy for vaccine development currently under investigation is the use of pathogen-derived T cell epitopes as a component of the vaccine. For viral pathogens, implementing this strategy involves scanning the predicted amino acid sequences of the viral proteins for likely peptide epitopes that would bind to MHC class I and MHC class II molecules. In addition to the complication of MHC sequence polymorphism in the human population, another complication of this strategy for peptide epitopes that would bind to MHC class II proteins is: The importance of viral proteins containing peptides that are cleaved into 8–10 amino acid long fragments. The ability of viruses to mutate their proteins to avoid MHC anchor residue sequences. The fact that long peptides (>13 amino acids) are rapidly degraded in cells. The fact that MHC class II proteins are intrinsically stable, even in the absence of binding to a peptide. The absence of defined sequence motifs that predict peptide binding to…arrow_forwardwith HIV, explain the mechanism of intracellular infection and the role of reverse transcriptase. What would you explain about the process? What is the significance of the CD4+ count? ( Discuss the meaning of various ranges of CD4 counts.) List 5 opportunistic infections AND describe data to suggest whether or not a patient has such an infection.arrow_forwardWhich of the following is the most likely explanation for an individual who lacks CCR5 as a result of a homozygous defect in the CCR5 gene becoming infected with HIV? a. The mutated CCR5 genes reverted to the normal form, rendering macrophages susceptible to macrophagetropic HIV variants. b. The macrophage-tropic HIV variant entered host cells using CD4 alone. c. The viral nucleic acid alone was taken up by cells, as in cell transformation by bacterial DNA. d. The individual had received a transplant of HIV-infected cells expressing normal CCR5. e. The primary infection involved a lymphocyte-tropic strain of HIV that used CXCR4 as its co-receptor.arrow_forward
- A number of vaccines against the SARS-CoV-2 virus (which causes COVID) are currently in use. Based on what you learned about the immune system and vaccines, this vaccine should provide immunity against this virus because: a Vaccines bind to the variable region of immunoglobulins, and prevent the antibody-antigen interactions required for the virus to be released from cells. b Vaccines elicit a primary immune response and resulting memory cells specific to the viral antigens can persist in the body c Vaccines block clonal expansion of helper T cells which are required for the virus to infect cells d Vaccines block the production of cytokines e Vaccines induce cytotoxic T cells to produce antibodies specific to antigens on the virusarrow_forwardGiven what we know about HIV, describe the impact of this virus on humoral and cellular immunity. [hint - HIV targets CD4 cells; how will this impact an immune response]arrow_forwardWhich of the following is false when considering the CCR5Δ32 mutation? a) The mutation prevents the entry of HIV-1 into a T cell. b) The deletion that produced CCR5Δ32 caused a frameshift which extends the length of the protein product. c) CCR5Δ32 prevents infection by HIV-1 in homozygotes but only delays the onset of HIV symptoms in heterozygotes. d) The protein product produced by CCR5Δ32 is altered in such a manner that it cannot embed in the cell membrane.arrow_forward
- Human Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage Learning