(a)
Interpretation:
The activation energy for the isomerization reaction is to be predicted.
Concept introduction:
A small packet of energy is known as quanta. Light is emitted in the form of quanta or photons. The Planck’s law gives the relation between the energy and wavelength, frequency and wavenumber.
Answer to Problem 20.68E
The activation energy for the isomerization reaction is
Explanation of Solution
The given isomerization reaction is,
It is given that the wavelength of least energetic photon is
To calculate the activation energy of given isomerization reaction the formula used is,
Where,
•
•
•
•
Substitute the values of Planck’s constant, speed of light and wavelength of photon in the given formula.
Thus, the energy for theleast energetic photon is
Thus, the activation energy for the isomerization reaction is
The activation energy for the isomerization reaction is
(b)
Interpretation:
The value of pre-exponential factor for the given isomerization reaction is to be calculated.
Concept introduction:
The Arrhenius equation gives the temperature dependence of reaction rates.
Where,
•
•
•
•
•
The pre-exponential factor is also known as the frequency factor or the steric factor.
Answer to Problem 20.68E
The value of pre-exponential factor is
Explanation of Solution
The rate constant for the given isomerization reaction is
The Arrhenius equation can be used for the calculation of activation energy. The Arrhenius equation is,
Where,
•
•
•
•
•
Conversion of temperature in Celsius to Kelvin is done by the formula,
Substitute the temperature
Thus, the given temperature in Kelvin is
Substitute the values of activation energy, gas constant, rate constant and temperature.
The above equation if further solved to obtain the value of pre-exponential factor as shown below.
The value of pre-exponential factor is
The value of pre-exponential factor is
(c)
Interpretation:
The value of the rate constant at
Concept introduction:
The Arrhenius equation gives the temperature dependence of reaction rates.
Where,
•
•
•
•
•
The pre-exponential factor is also known as the frequency factor or the steric factor.
Answer to Problem 20.68E
The value of the rate constant at
Explanation of Solution
It is given that the rate constant at
The form of Arrhenius equation used to calculate the rate constant at different temperature is,
Where,
•
•
•
•
Conversion of temperature in Celsius to Kelvin is done by the formula,
Substitute the temperature
Thus, the temperature
Substitute the values of activation energy, temperatures, the rate constant at
Take inverse of logarithm on both sides of equation to solve for the value of rate constant at
Thus, the value of rate constant at
The value of the rate constant at
Want to see more full solutions like this?
Chapter 20 Solutions
Physical Chemistry
- Q2: Draw all applicable resonance forms for the acetate ion CH3COO. Clearly show all lone pairs, charges, and arrow formalism.arrow_forwardIn the following molecule, indicate the hybridization and shape of the indicated atoms. -z: CH3 CH 3 HO: H3C :Ö: CIarrow_forwardShow mechanism with explanation. don't give Ai generated solutionarrow_forward
- Please Help!!!arrow_forwardQ2: Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor. SO2 NO3 Page 3 of 4 Chem 0310 Organic Chemistry 1 HW Problem Sets CH3NSO (Thionitromethane, skeleton on the right) H N H3C Sarrow_forwardA 10.00-mL pipet was filled to the mark with distilled water at the lab temperature of 22 oC. The water, delivered to a tared weighing bottle was found to weigh 9.973 g. The density of water at 22 oC is 0.99780 g/mL. Calculate the volume of the pipet in mL. (disregard air displacement for this calculation and record your answer to the proper number of significant digits.)arrow_forward
- Resonance Formsa) Draw all resonance forms of the molecules. Include curved arrow notation. Label majorresonance contributor.arrow_forwardShow work with explanation needed. Don't give Ai generated solutionarrow_forwardf) The unusual molecule [2.2.2] propellane is pictured. 1) Given the bond length and bond angles in the image, what hybridization scheme best describes the carbons marked by the askerisks? 2) What types of orbitals are used in the bond between the two carbons marked by the askerisks? 3) How does this bond compare to an ordinary carbon-carbon bond (which is usually 1.54 Å long)? CH2 1.60Å H2C た C CH2 H2C H₂C * 120° C H2arrow_forward
- Denote the dipole for the indicated bonds in the following molecules. H3C CH3 B F-CCl3 Br-Cl | H3C Si(CH3)3 OH НО. HO H O HO OH vitamin C CH3arrow_forwardQ2: Draw all applicable resonance forms for the acetate ion CH3COO. Clearly show all lone pairs, charges, and arrow formalism.arrow_forwardHow do I calculate the amount of quarks in magnesium?arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co