
(a)
Interpretation:
The activation energy for the isomerization reaction is to be predicted.
Concept introduction:
A small packet of energy is known as quanta. Light is emitted in the form of quanta or photons. The Planck’s law gives the relation between the energy and wavelength, frequency and wavenumber.

Answer to Problem 20.68E
The activation energy for the isomerization reaction is
Explanation of Solution
The given isomerization reaction is,
It is given that the wavelength of least energetic photon is
To calculate the activation energy of given isomerization reaction the formula used is,
Where,
•
•
•
•
Substitute the values of Planck’s constant, speed of light and wavelength of photon in the given formula.
Thus, the energy for theleast energetic photon is
Thus, the activation energy for the isomerization reaction is
The activation energy for the isomerization reaction is
(b)
Interpretation:
The value of pre-exponential factor for the given isomerization reaction is to be calculated.
Concept introduction:
The Arrhenius equation gives the temperature dependence of reaction rates.
Where,
•
•
•
•
•
The pre-exponential factor is also known as the frequency factor or the steric factor.

Answer to Problem 20.68E
The value of pre-exponential factor is
Explanation of Solution
The rate constant for the given isomerization reaction is
The Arrhenius equation can be used for the calculation of activation energy. The Arrhenius equation is,
Where,
•
•
•
•
•
Conversion of temperature in Celsius to Kelvin is done by the formula,
Substitute the temperature
Thus, the given temperature in Kelvin is
Substitute the values of activation energy, gas constant, rate constant and temperature.
The above equation if further solved to obtain the value of pre-exponential factor as shown below.
The value of pre-exponential factor is
The value of pre-exponential factor is
(c)
Interpretation:
The value of the rate constant at
Concept introduction:
The Arrhenius equation gives the temperature dependence of reaction rates.
Where,
•
•
•
•
•
The pre-exponential factor is also known as the frequency factor or the steric factor.

Answer to Problem 20.68E
The value of the rate constant at
Explanation of Solution
It is given that the rate constant at
The form of Arrhenius equation used to calculate the rate constant at different temperature is,
Where,
•
•
•
•
Conversion of temperature in Celsius to Kelvin is done by the formula,
Substitute the temperature
Thus, the temperature
Substitute the values of activation energy, temperatures, the rate constant at
Take inverse of logarithm on both sides of equation to solve for the value of rate constant at
Thus, the value of rate constant at
The value of the rate constant at
Want to see more full solutions like this?
Chapter 20 Solutions
Physical Chemistry
- BeF2 exists as a linear molecule. Which kind of hybrid orbitals does Be use in this compound? Use Orbital Diagrams to show how the orbitals are formed. (6)arrow_forwardPlease answer the questions and provide detailed explanations as well as a drawing to show the signals in the molecule.arrow_forwardPropose an efficient synthesis for the following transformation: EN The transformation above can be performed with some reagent or combination of the reagents listed below. Give the necessary reagents in the correct order, as a string of letters (without spaces or punctuation, such as "EBF"). If there is more than one correct solution, provide just one answer. A. t-BuOK B. Na2Cr2O7, H2SO4, H2O C. NBS, heat F. NaCN D. MeOH E. NaOH G. MeONa H. H2O I. 1) O3; 2) DMSarrow_forward
- Stereochemistry Identifying the enantiomer of a simple organic molecule 1/5 Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of t above box under the table. Br ま HO H 0 Molecule 1 Molecule 2 Molecule 3 OH H Br H H" Br OH Br Molecule 4 Br H OH + + OH Molecule 5 Br H OH none of the above Molecule 6 Br H... OHarrow_forwardPlease answer the questions and provide detailed explanations.arrow_forwardQuestion 16 0/1 pts Choose the correct option for the following cycloaddition reaction. C CF3 CF3 CF3 CF3 The reaction is suprafacial/surafacial and forbidden The reaction is antarafacial/antarafacial and forbidden The reaction is antarafacial/antarafacial and allowed The reaction is suprafacial/surafacial and allowedarrow_forward
- 1. Give the structures of the products obtained when the following are heated. Include stereochemistry where relevant. A NO2 + NO2 B + C N=C CEN + { 2. Which compounds would you heat together in order to synthesize the following?arrow_forwardExplain how myo-inositol is different from D-chiro-inositol. use scholarly sources and please hyperlink.arrow_forwardWhat is the molarisuty of a 0.396 m glucose solution if its density is 1.16 g/mL? MM glucose 180.2 /mol.arrow_forward
- Provide the proper IUPAC or common name for the following compound. Dashes, commas, and spaces must be used correctly. Br ......Im OHarrow_forwardCan you please help me solve this problems. The top one is just drawing out the skeletal correct and then the bottom one is just very confusing to me and its quite small in the images. Can you enlarge it and explain it to me please. Thank You much (ME EX1) Prblm #33arrow_forwardI'm trying to memorize VESPR Shapes to solve problems like those. I need help making circles like the second image in blue or using an x- and y-axis plane to memorize these and solve those types of problems, especially the ones given in the top/first image (180, 120, 109.5). Can you help me with this? or is their any other efficient method do soarrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co




