
(a)
Interpretation:
The time taken by the given thermal decomposition reaction of mercuric oxide to produce
Concept introduction:
The rate law for second order reaction is represented as,
This represents the case in which identical reactants are present. In the second order kinetics,
Where,
•
•
•

Answer to Problem 20.23E
The time taken by the given thermal decomposition reaction of mercuric oxide to produce
The amount of time taken in second order kinetics to produce the same amount of gas is higher than that of the first order kinetics.
Explanation of Solution
It is given that the thermal decomposition of mercuric oxide follows second order kinetics and the rate constant is
The initial amount of
The number of moles of
Where,
•
•
•
•
•
Substitute the values of pressure, volume, gas constant and temperature in the above formula.
Thus, the number of moles of
The amount of
The molar mass of
Substitute the number of moles and molar mass of
The amount of
The amount of
Thus, the amount of
The rate law for the given second order reaction is given by,
Where,
•
•
•
Substitute the values of initial amount, amount at time
Under the assumption of standard temperature and pressure, units cancel out such that the equation becomes,
Thus, the time taken by the given thermal decomposition reaction of mercuric oxide to produce
On comparison of the time taken by first order kinetics and second order kinetics, it is observed that the amount of time taken in second order kinetics to produce the same amount of gas is higher than the first order kinetics.
The time taken by the given thermal decomposition reaction of mercuric oxide to produce
The amount of time taken in second order kinetics to produce the same amount of gas is higher than the first order kinetics.
(b)
Interpretation:
The time taken by the given thermal decomposition reaction of mercuric oxide to produce
Concept introduction:
The rate law for second order reaction is represented as,
This represents the case in which identical reactants are presents. In the second order kinetics rate of the reaction is proportional to the square of concentration of the reactant. The integrated rate law for second order reaction is represented as,
Where,
•
•
•

Answer to Problem 20.23E
The time taken by the given thermal decomposition reaction of mercuric oxide to produce
The amount of time taken in second order kinetics to produce the same amount of gas is higher than that of the first order kinetics.
Explanation of Solution
It is given that the thermal decomposition of mercuric oxide follows second order kinetics and the rate constant is
The initial amount of
The number of moles of
Where,
•
•
•
•
•
Substitute the values of pressure, volume, gas constant and temperature in the above formula.
Thus, the number of moles of
The amount of
The molar mass of
Substitute the number of moles and molar mass of
The amount of
The amount of
Thus, the amount of
The rate law for the given second order reaction is given by,
Where,
•
•
•
Substitute the values of initial amount, amount at time
Under the assumption of standard temperature and pressure, units cancel out such that the equation becomes,
Thus, the time taken by the given thermal decomposition reaction of mercuric oxide to produce
On comparison of the time taken by first order kinetics and second order kinetics, it is observed that the amount of time taken in second order kinetics to produce the same amount of gas is higher than that of the first order kinetics.
The time taken by the given thermal decomposition reaction of mercuric oxide to produce
The amount of time taken in second order kinetics to produce the same amount of gas is higher than that of the first order kinetics.
Want to see more full solutions like this?
Chapter 20 Solutions
Physical Chemistry
- Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons. Describe how electronegativity is illustrated on the periodic table including trends between groups and periods and significance of atom size.arrow_forwardDefine the term “transition.” How does this definition apply to the transition metals?arrow_forwardDescribe how the properties of the different types of elements (metals, nonmetals, metalloids) differ.arrow_forward
- Use a textbook or other valid source to research the physical and chemical properties of each element listed in Data Table 1 using the following as a guideline: Ductile (able to be deformed without losing toughness) and malleable (able to be hammered or pressed permanently out of shape without breaking or cracking) or not ductile or malleable Good, semi, or poor conductors of electricity and heat High or low melting and boiling points Occur or do not occur uncombined/freely in nature High, intermediate, or low reactivity Loses or gains electrons during reactions or is not reactivearrow_forwardProvide the Physical and Chemical Properties of Elements of the following elements listedarrow_forwardQuestions 4 and 5arrow_forward
- For a titration of 40.00 mL of 0.0500 M oxalic acid H2C2O4 with 0.1000 M KOH, calculate the pH at each of the following volume of KOH used in the titration: 1) before the titration begin;2) 15 mL; 3) 20 mL; 4) 25 mL; 5) 40 mL; 6) 50 mL. Ka1 = 5.90×10^-2, Ka2 = 6.50×10^-5 for oxalic acid.arrow_forwardPredict the major organic product(s), if any, of the following reactions. Assume all reagents are in excess unless otherwise indicated.arrow_forwardPredict the major organic product(s), if any, of the following reactions. Assume all reagents are in excess unless otherwise indicated.arrow_forward
- How many signals would you expect to find in the 1 H NMR spectrum of each given compound? Part 1 of 2 2 Part 2 of 2 HO 5 ☑ Х IIIIII***** §arrow_forwardA carbonyl compound has a molecular ion with a m/z of 86. The mass spectra of this compound also has a base peak with a m/z of 57. Draw the correct structure of this molecule. Drawingarrow_forwardCan you draw this using Lewis dot structures and full structures in the same way they are so that I can better visualize them and then determine resonance?arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





