(a)
Interpretation:
For given gaseous reaction the enthalpy
Concept introduction:
Entropy change: The sign of
- When a molecule is broken down and gives two or more smaller molecules.
- When the moles of gas is increases (by the breaking of molecules)
Solid changes to liquid or gas state or liquid state changes to gas state.
Entropy is the measure of randomness in the system. Standard entropy change in a reaction is the difference in entropy of the products and reactants.
Where,
Entropy changes: it is used to describe the disorder. It is the amount of arrangements possible in a system at a particular state.
If the disorder increases in a system, then
If the disorder decreases in a system, then
If the disorder equal in a system, then
Enthalpy is the amount energy absorbed or released in a process.
The enthalpy change in a system
Where,
(b)
Interpretation:
For given decomposition reaction the standard free energy
Concept introduction:
Free energy (or) entropy change is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter G. All spontaneous process is associated with the decrease of free energy in the system. The equation given below helps us to calculate the change in free energy in a system.
Where,
(c)
Interpretation:
For the given reaction the significance of
Concept introduction:
In
In non-spontaneous process, there is a requirement of external energy source. The free energy of the system increases. The entropy decreases in non-spontaneous process.
(d)
Interpretation:
For the given reaction, in which temperature become spontaneous has to be determined.
Concept introduction:
In thermodynamics a process is spontaneous if it is taking place by itself without the help of external energy. All spontaneous process will have highly energetic initial state than the final state. This indicates that while the process occurs, there is a decrease in free energy of the system. The increase in randomness also favors the spontaneity of a process.
In non-spontaneous process, there is a requirement of external energy source. The free energy of the system increases. The entropy decreases in non-spontaneous process.
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
Chemistry: The Molecular Nature of Matter and Change
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY