(a)
Interpretation:
The change in standard Gibbs free energy for the dissociation of HBrO needs to be calculated.
Concept Introduction:
The relation between the change in Gibbs free energy of reaction and equilibrium constant is as follows:
Here, R is the universal gas constant and T is temperature.
(b)
Interpretation: The value of change in Gibbs free energy needs to be calculated for dissociation of HBrO using the given concentration values.
Concept Introduction: The relation between change in Gibbs free energy and change in standard Gibbs free energy is represented as follows:
Here, R is the universal gas constant, T is temperature, and Q is the reaction quotient.
The reaction quotient for any reaction is calculated by taking the ratio of the concentration of product species to the reactant species.
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
Chemistry: The Molecular Nature of Matter and Change
- a Calculate K1, at 25C for phosphoric acid: H3PO4(aq)H+(aq)+H2PO4(aq) b Which thermodynamic factor is the most significant in accounting for the fact that phosphoric acid is a weak acid? Why ?arrow_forwardActually, the carbon in CO2(g) is thermodynamically unstable with respect to the carbon in calcium carbonate(limestone). Verify this by determining the standardGibbs free energy change for the reaction of lime,CaO(s), with CO2(g) to make CaCO3(s).arrow_forwarda Calculate K1, at 25C for sulfurous acid: H2SO3(aq)H+(aq)+HSO3(aq) b Which thermodynamic factor is the most significant in accounting for the fact that sulfurous acid is a weak acid? Why?arrow_forward
- The ionization constant, Ka, for acetic acid is 1.8 105 at 25 C. What is the value of rG for this reaction? Is this reaction product- or reactant-favored at equilibrium?arrow_forwardAdenosine triphosphate, ATP, is used as a free-energy source by biological cells. (See the essay on page 624.) ATP hydrolyzes in the presence of enzymes to give ADP: ATP(aq)+H2O(l)ADP(aq)+H2PO4(aq);G=30.5kJ/molat25C Consider a hypothetical biochemical reaction of molecule A to give molecule B: A(aq)B(aq);G=+15.0kJ/molat25C Calculate the ratio [B]/[A] at 25C at equilibrium. Now consider this reaction coupled to the reaction for the hydrolysis of ATP: A(aq)+ATP(aq)+H2O(l)B(aq)+ADP(aq)+H2PO4(aq) If a cell maintains a high ratio of ATP to ADP and H2PO4 by continuously making ATP, the conversion of A to B can be made highly spontaneous. A characteristic value of this ratio is [ATP][ADP][H2PO4]=500 Calculate the ratio [B][A] in this case and compare it with the uncoupled reaction. Compared with the uncoupled reaction, how much larger is this ratio when coupled to the hydrolysis of ATP?arrow_forwardWhat information can be determined from G for a reaction? Does one get the same information from G, the standard free energy change? G allows determination of the equilibrium constant K for a reaction. How? How can one estimate the value of K at temperatures other than 25C for a reaction? How can one estimate the temperature where K = 1 for a reaction? Do all reactions have a specific temperature where K = 1?arrow_forward
- Calculate G and K at 25C for the reactions in Exercises 37 and 41.arrow_forwardElemental boron, in the form of thin fibers, can be made by reducing a boron halide with H2. BCl3(g) + 3/2 H2(g) B(s) + 3HCl(g) Calculate H, S, and G at 25 C for this reaction. Is the reaction predicted to be product favored at equilibrium at 25 C? If so, is it enthalpy driven or entropy driven?arrow_forwardThe equilibrium constant for a certain reaction increases by a factor of 6.67 when the temperature is increased from 300.0 K to 350.0 K. Calculate the standard change in enthalpy (H) for this reaction (assuming H is temperature-independent).arrow_forward
- A cave in Mexico was recently discovered to have some interesting chemistry. Hydrogen sulfide, H2S, reacts with oxygen in the cave to give sulfuric acid, which drips from the ceiling in droplets with a pH less than 1. The reaction occurring is H2S(g) + 2 O2(g) H2SO4() Calculate rH, rS, and rG. Is the reaction product-favored at equilibrium at 25 C? Is it enthalpy- or entropy-driven?arrow_forwardAt room temperature (25°C), the equilibrium constant (Kw) for the self-ionization of water is 1.00 × 10−14. Using this information, calculate the standard free energy change for the aqueous reaction of hydrogen ion with hydroxide ion to produce water at 25°C. (Hint: The reaction is the reverse of the self-ionization reaction.)arrow_forwardConsider the following reaction:4NH3(aq) + 5O2(g) ⇌ 6H2O(g) + 4NO(g) a. Calculate ΔG0 at 25°C given that ΔGf°(NH3) = -16.4 kj/mol, ΔGf°(O2) = 0 kj/mol, ΔGf°(H2O) = -228.6 kj/mol and ΔGf°(NO) = 87.6 kj/mol. b. Calculate ΔG for the nonstandart conditions of 100°C, 2 mol/L NH3(g), 1.0 bar O2(g), 1.5 bar H2O(g), and 1.2 bar NO(g).arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning