Organic Chemistry
Organic Chemistry
8th Edition
ISBN: 9781305580350
Author: William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher: Cengage Learning
Question
Book Icon
Chapter 20, Problem 20.53P

(a)

Interpretation Introduction

Interpretation: The product formation in the given example of Cope rearrangement of 1,5-diene has to be shown.

Concept Introduction:

Cope-rearrangement:

It is a pericyclic reaction that involves the redistribution of six electrons through the formation of a cyclic transition state from which a 1,5-diene gets converted into its isomeric form.

Example with mechanism of cope-arrangement:

Organic Chemistry, Chapter 20, Problem 20.53P , additional homework tip  1

In this mechanism, two pi-bonds and one sigma bond of the reactant molecule has been rearranged and formed two new pi-bonds through a cyclic transition state.

Identification of cope-rearrangement in a1,5-diene:

In the cope-rearrangement, the flow of electrons takes place between six bonds that are bonded as C=C-C-C-C=C. Identification of such a bonding pattern in a 1,5-diene indicates the possibility of Cope rearrangement to occur as shown here:

Organic Chemistry, Chapter 20, Problem 20.53P , additional homework tip  2

The carbon atoms that are involving in the cope-rearrangement are shown in bold.

(b)

Interpretation Introduction

Interpretation: The product formation in the given example of Cope rearrangement of 1,5-diene has to be shown.

Concept Introduction:

Cope-rearrangement:

It is a pericyclic reaction that involves the redistribution of six electrons through the formation of a cyclic transition state from which a 1,5-diene gets converted into its isomeric form.

Example with mechanism of cope-arrangement:

Organic Chemistry, Chapter 20, Problem 20.53P , additional homework tip  3

In this mechanism, two pi-bonds and one sigma bond of the reactant molecule has been rearranged and formed two new pi-bonds through a cyclic transition state.

Identification of cope-rearrangement in a1,5-diene:

In the cope-rearrangement, the flow of electrons takes place between six bonds that are bonded as C=C-C-C-C=C. Identification of such a bonding pattern in a 1,5-diene indicates the possibility of Cope rearrangement to occur as shown here:

Organic Chemistry, Chapter 20, Problem 20.53P , additional homework tip  4

The carbon atoms that are involving in the cope-rearrangement are shown in bold.

(c)

Interpretation Introduction

Interpretation: The product formation in the given example of Cope rearrangement of 1,5-diene has to be shown.

Concept Introduction:

Cope-rearrangement:

It is a pericyclic reaction that involves the redistribution of six electrons through the formation of a cyclic transition state from which a 1,5-diene gets converted into its isomeric form.

Example with mechanism of cope-arrangement:

Organic Chemistry, Chapter 20, Problem 20.53P , additional homework tip  5

In this mechanism, two pi-bonds and one sigma bond of the reactant molecule has been rearranged and formed two new pi-bonds through a cyclic transition state.

Identification of cope-rearrangement in a1,5-diene:

In the cope-rearrangement, the flow of electrons takes place between six bonds that are bonded as C=C-C-C-C=C. Identification of such a bonding pattern in a 1,5-diene indicates the possibility of Cope rearrangement to occur as shown here:

Organic Chemistry, Chapter 20, Problem 20.53P , additional homework tip  6

The carbon atoms that are involving in the cope-rearrangement are shown in bold.

Blurred answer
Students have asked these similar questions
When 1 mole of buta-1,3-diene reacts with 1 mole of HBr, both 3-bromobut-1-ene and 1-bromobut-2-ene are formed. Propose a mechanism to account for this mixture of products.
On treatment with HBr, 3-Methyl-1-pentene undergoes addition and rearrangement to yield 3-Bromo-3-methylpentene
Chlorination of 1,3,5‑trimethylcyclohexane via radical halogenation leads to the formation of several monohalogenated products. Identify the products, then estimate the relative percentages of each product. Step 1: A monochlorination reaction will substitute a proton for a chlorine. Start by identifying all the unique positions that can be halogenated. Ignore stereochemistry. Replace each unique proton with a chlorine.

Chapter 20 Solutions

Organic Chemistry

Ch. 20.6 - Prob. 20.11PCh. 20.6 - Prob. 20.12PCh. 20 - If an electron is added to 1,3-butadiene, into...Ch. 20 - Prob. 20.15PCh. 20 - Predict the structure of the major product formed...Ch. 20 - Predict the major product formed by 1,4-addition...Ch. 20 - Predict the structure of the major 1,2-addition...Ch. 20 - Prob. 20.19PCh. 20 - Prob. 20.20PCh. 20 - Prob. 20.21PCh. 20 - Prob. 20.22PCh. 20 - Prob. 20.23PCh. 20 - Pyridine exhibits a UV transition of the type n at...Ch. 20 - Prob. 20.25PCh. 20 - Prob. 20.26PCh. 20 - Prob. 20.27PCh. 20 - Write the frontier molecular orbital analysis for...Ch. 20 - Prob. 20.29PCh. 20 - Draw structural formulas for the products of...Ch. 20 - Propose structural formulas for compounds A and B...Ch. 20 - Under certain conditions, 1,3-butadiene can...Ch. 20 - Prob. 20.33PCh. 20 - Prob. 20.34PCh. 20 - The following triene undergoes an intramolecular...Ch. 20 - Prob. 20.36PCh. 20 - Prob. 20.37PCh. 20 - Prob. 20.38PCh. 20 - Prob. 20.39PCh. 20 - The Diels-Alder reaction is not limited to making...Ch. 20 - The first step in a synthesis of dodecahedrane...Ch. 20 - Bicyclo-2,5-heptadiene can be prepared in two...Ch. 20 - Prob. 20.43PCh. 20 - Prob. 20.44PCh. 20 - Following is a retrosynthetic scheme for the...Ch. 20 - Prob. 20.46PCh. 20 - Prob. 20.47PCh. 20 - Prob. 20.48PCh. 20 - Prob. 20.49PCh. 20 - Prob. 20.50PCh. 20 - What reaction presented in this chapter is...Ch. 20 - Claisen rearrangement of an allyl phenyl ether...Ch. 20 - Prob. 20.53PCh. 20 - Prob. 20.54PCh. 20 - We now continue the use of organic chemistry...Ch. 20 - Write the products of the following sequences of...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305080485
    Author:John E. McMurry
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning