A Carnot engine operates between two heat reservoirs at temperatures TH and TC. An inventor proposes to increase the efficiency by running one engine between TH and an intermediate temperature T′ and a second engine between T′ and TC. using as input the heat expelled by the first engine. Compute the efficiency of this composite system, and compare it to that of the original engine.
Want to see the full answer?
Check out a sample textbook solutionChapter 20 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
College Physics (10th Edition)
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
College Physics: A Strategic Approach (3rd Edition)
Conceptual Physical Science (6th Edition)
An Introduction to Thermal Physics
Life in the Universe (4th Edition)
- Of the following, which is not a statement of the second law of thermodynamics? (a) No heat engine operating in a cycle can absorb energy from a reservoir and use it entirely to do work, (b) No real engine operating between two energy reservoirs can be more efficient than a Carnot engine operating between the same two reservoirs, (c) When a system undergoes a change in state, the change in the internal energy of the system is the sum of the energy transferred to the system by heat and the work done on the system, (d) The entropy of the Universe increases in all natural processes, (e) Energy will not spontaneously transfer by heat from a cold object to a hot object.arrow_forwardA copper rod of cross-sectional area 5.0 cm2 and length 5.0 m conducts heat from a heat reservoir at 373 K to one at 273 K. What is the time rate of change of the universe's entropy for this process?arrow_forward(a) What is the hot reservoir temperature of a Carnot engine that has an eficiency of 42.0% and a cold reservoir temperature of 210C ? (b) What must the hot reservoir temperature be for a real heat engine that achieves 0.700 of the maximum eficiency, but still has an efficiency of 42.0% (and a cold reservoir at 27.0C )? (c) Does your answer imply practical limits to the efficiency of car gasoline engines?arrow_forward
- Which of the following is true for the entropy change of a system that undergoes a reversible, adiabatic process? (a) S 0 (b) S = 0 (c) S 0arrow_forwardA Carnot engine has an efficiency of 0.60. When the temperature of its cold reservoir the efficiency drops to 0.55. If initially Tc=27, determine (a) the constant value of Th and (b) the final value of Tc.arrow_forwardAt point A in a Carnot cycle, 2.34 mol of a monatomic ideal gas has a pressure of 1 4000 kPa, a volume of 10.0 L, and a temperature of 720 K. The gas expands isothermally to point B and then expands adiabatically to point C, where its volume is 24.0 L. An isothermal compression brings it to point D, where its volume is 15.0 L. An adiabatic process returns the gas to point A. (a) Determine all the unknown pressures, volumes, and temperatures as you f ill in the following table: (b) Find the energy added by heat, the work done by the engine, and the change in internal energy for each of the steps A B, B C, C D, and D A (c) Calculate the efficiency Wnet/|Qk|. (d) Show that the efficiency is equal to 1 - TC/TA, the Carnot efficiency.arrow_forward
- True or False: The entropy change in an adiabatic process must be zero because Q = 0.arrow_forwardAn ideal gas is taken from an initial temperature Ti to a higher final temperature Tf along two different reversible paths. Path A is at constant pressure, and path B is at constant volume. What is the relation between the entropy changes of the gas for these paths? (a) SA SB (b) SA = SB (c) SA SBarrow_forwardA thermal engine produces 4 MJ of electrical energy while operating between two thermal baths of different temperatures. The working substance of the engine discharges 5 MJ of heat to the cold temperature bath. What is the efficiency of the engine?arrow_forward
- A Carnot engine operates in a Carnot cycle between a heat source at 550 and a heat sink at 20 . Find the efficiency of the Carnot engine.arrow_forward(a) On a winter day, a certain house loses 5.00108J of heat to the outside (about 500,000 Btu). What is the total change in entropy due to this heat transfer alone, assuming an average indoor temperature of 21.0C and an average outdoor temperature of 5.00C ? (b) This large change in entropy implies a large amount of energy has become unavailable to do work. Where do we find more energy when such energy is lost to us?arrow_forwardA 1.00-mol sample of an ideal monatomic gas is taken through the cycle shown in Figure P18.63. The process AB is a reversible isothermal expansion. Calculate (a) the net work done by the gas, (b) the energy added to the gas by heat, (c) the energy exhausted from the gas by heat, and (d) the efficiency of the cycle. (e) Explain how the efficiency compares with that of a Carnot engine operating between the same temperature extremes. Figure P18.63arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning