University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 20, Problem 20.19DQ
Are the earth and sun in thermal equilibrium? Are there entropy changes associated with the transmission of energy from the sun to the earth? Does
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A system of 7,542 particles initially has 5.44 x 1039 possible configurations. If we remove some of the particles and are left with 2,118 particles in the system what is the change in entropy?
You can assume the number of possible configurations does not change.Please express answer in scientific notation to the second decimal place
The temperature in the deep interiors of some giant molecular clouds in the Milky Way galaxy is 50 K. Compare the amount of energy that would have to be transferred to this environment to the amount that would have to be transferred to a room temperature environment to bring about a 7.7 J/K increase in the entropy of the universe in each case.
ΔEroom temp/ ΔEMilky Way =
In discussing the energy of a physiological system, the Gibbs free energy is most relevant. Since the value of entropy cannot be known, change in the Gibbs free energy is more commonly used. In order to get reliable result we should hold all variables constant except the one we are interested in measuring. If you are interested in studying muscle contraction in this perspective, which one of the following should be measured? Select one:
a. Change in pressure
b. Change in electrical charge
c. Change in length
d. Change in temperature
e. Change in number of molecules
Chapter 20 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 20.1 - Your left and right hands are normally at the same...Ch. 20.2 - Rank the following heat engines in order from...Ch. 20.3 - For an Otto-cycle engine with cylinders of a fixed...Ch. 20.4 - Can you cool your house by leaving the...Ch. 20.5 - Would a 100%-efficient engine (Fig. 20.11a)...Ch. 20.6 - An inventor looking for financial support comes to...Ch. 20.7 - Suppose 2.00 kg of water at 50C spontaneously...Ch. 20.8 - A quantity of N molecules of an ideal gas...Ch. 20 - A pot is half-filled with water, and a lid is...Ch. 20 - Prob. 20.2DQ
Ch. 20 - Prob. 20.3DQCh. 20 - Prob. 20.4DQCh. 20 - Why must a room air conditioner be placed in a...Ch. 20 - Prob. 20.6DQCh. 20 - Prob. 20.7DQCh. 20 - An electric motor has its shaft coupled to that of...Ch. 20 - When a wet cloth is hung up in a hot wind in the...Ch. 20 - Compare the pV-diagram for the Otto cycle in Fig....Ch. 20 - The efficiency of heat engines is high when the...Ch. 20 - What would be the efficiency of a Carnot engine...Ch. 20 - Real heat engines, like the gasoline engine in a...Ch. 20 - Does a refrigerator full of food consume more...Ch. 20 - In Example 20.4, a Carnot refrigerator requires a...Ch. 20 - How can the thermal conduction of heat from a hot...Ch. 20 - Explain why each of the following processes is an...Ch. 20 - The free expansion of an ideal gas is an adiabatic...Ch. 20 - Are the earth and sun in thermal equilibrium? Are...Ch. 20 - Prob. 20.20DQCh. 20 - Prob. 20.21DQCh. 20 - Prob. 20.22DQCh. 20 - BIO A growing plant creates a highly complex and...Ch. 20 - A diesel engine performs 2200 J of mechanical work...Ch. 20 - An aircraft engine takes in 9000 J of heat and...Ch. 20 - A Gasoline Engine. A gasoline engine takes in 1.61...Ch. 20 - A gasoline engine has a power output of 180 kW...Ch. 20 - The pV-diagram in Fig. E20.5 shows a cycle of heat...Ch. 20 - (a) Calculate the theoretical efficiency for an...Ch. 20 - The Otto-cycle engine in a Mercedes-Benz SL1 a...Ch. 20 - Section 20.4 Refrigerators 20.8The coefficient of...Ch. 20 - A refrigerator has a coefficient of performance of...Ch. 20 - A freezer has a coefficient of performance of...Ch. 20 - A refrigerator has a coefficient of performance of...Ch. 20 - A Carnot engine is operated between two heat...Ch. 20 - A Carnot engine whose high-temperature reservoir...Ch. 20 - An ice-making machine operates in a Carnot cycle....Ch. 20 - A Carnot engine has an efficiency of 66% and...Ch. 20 - A certain brand of freezer is advertised to use...Ch. 20 - A Carnot refrigerator is operated between two heat...Ch. 20 - A Carnot heat engine uses a hot reservoir...Ch. 20 - You design an engine that takes in 1.50 104 J of...Ch. 20 - A 4.50-kg block of ice at 0.00C falls into the...Ch. 20 - A sophomore with nothing better to do adds heat to...Ch. 20 - CALC You decide to take a nice hot bath but...Ch. 20 - A 15.0-kg block of ice at 0.0C melts to liquid...Ch. 20 - CALC You make tea with 0.250 kg of 85.0C water and...Ch. 20 - Three moles of an ideal gas undergo a reversible...Ch. 20 - What is the change in entropy of 0.130 kg of...Ch. 20 - (a) Calculate the change in entropy when 1.00 kg...Ch. 20 - Entropy Change Due to Driving. Premium gasoline...Ch. 20 - CALC Two moles of an ideal gas occupy a volume V....Ch. 20 - A box is separated by a partition into two parts...Ch. 20 - CALC A lonely party balloon with a volume of 2.40...Ch. 20 - You are designing a Carnot engine that has 2 mol...Ch. 20 - CP An ideal Carnot engine operates between 500C...Ch. 20 - Prob. 20.34PCh. 20 - CP A certain heat engine operating on a Carnot...Ch. 20 - A heat engine takes 0.350 mol of a diatomic ideal...Ch. 20 - Prob. 20.37PCh. 20 - What is the thermal efficiency of an engine that...Ch. 20 - CALC You build a heal engine that takes 1.00 mol...Ch. 20 - CP As a budding mechanical engineer, you are...Ch. 20 - CALC A heal engine Operates using the cycle shown...Ch. 20 - CP BIO Humun Entropy. A person who has skin of...Ch. 20 - An experimental power plant at the Natural Energy...Ch. 20 - CP BIO A Human Engine. You decide to use your body...Ch. 20 - CALC A cylinder contains oxygen at a pressure of...Ch. 20 - A monatomic ideal gas it taken around the cycle...Ch. 20 - A Carnot engine operates between two heat...Ch. 20 - A typical coal-fired power plant generates 1000 MW...Ch. 20 - Automotive Thermodynamics. A Volkswagen Passat has...Ch. 20 - An air conditioner operates on 800 W of power and...Ch. 20 - The pV-diagram in Fig. P20.51 shows the cycle for...Ch. 20 - BIO Human Entropy. A person with skin of surface...Ch. 20 - CALC An object of mass m1, specific heat c1, and...Ch. 20 - CALC To heat 1 cup of water (250 cm3) to make...Ch. 20 - DATA In your summer job with a venture capital...Ch. 20 - DATA For a refrigerator or air conditioner, the...Ch. 20 - DATA You are conducting experiments to study...Ch. 20 - Consider a Diesel cycle that starts (at point a in...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...Ch. 20 - POWER FROM THE SEA. Ocean thermal energy...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The reason that someone pulls the table cloth out from under glasses, plates and silverware set out for a forma...
Physics (5th Edition)
Choose the best answer to each of the following. Explain your reasoning. Where would you most expect to find an...
Cosmic Perspective Fundamentals
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
8. A 1000 kg car pushes a 2000 kg truck that has a dead battery. When the driver steps on the accelerator, the ...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
The composition of the fuel rods in the nuclear reactor.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An ideal gas is taken from an initial temperature Ti to a higher final temperature Tf along two different reversible paths. Path A is at constant pressure, and path B is at constant volume. What is the relation between the entropy changes of the gas for these paths? (a) SA SB (b) SA = SB (c) SA SBarrow_forwardTwo blocks of the same mass m, made of the same material with specific heat c, have temperatures Th and Tc respectively, where Th> Tc. Both objects are brought into contact so that there is transfer of thermal energy between them. Suppose that the system made up of both objects is isolated from the environment. a) What is the equilibrium temperature of the system? b) Calculate the change in entropy of each block. c) Calculate the change in total entropy of the system d) Show that the change in entropy of the system is a quantity positive e) Is the above process a reversible process? Justify your answerarrow_forwardS(B, T) 1 T₁ T Figure A1 Figure A1 shows the entropy S of a paramagnetic solid as a function of its temperature T and imposed magnetic field B. Adiabatic cooling consists in bringing the system from state 1 to 3 by making it undergo an isothermal change of magnetic field from 1 to 2 followed by an isentropic adiabatic process from 2 to 3. The entropy of the solid can be approximated by the equation S(B,T) = So — K B² T2' - where K is a positive constant and Så is some reference entropy value. (a) Find the expression of the heat Q₁2 received by the system during the isothermal process from state 1 to 2. Discuss the meaning of its sign. (b) Express the final temperature T3 as a function of B₂ and T₁. 3 T3 B₁ < B₂ B₂arrow_forward
- A system of 8,872 particles initially has 3.21*1042 possible configurations. If we remove some of the particles and are left with 3,049 particles in the system what is the change in entropy? You can assume fromthis question the number of possible configurations does not change.Please express answer in scientific notation to the second decimal placearrow_forwardEnergy is added as heat to 250 g of water at 10°C, raising its temperature one Celsius degree. a) Does this lead to an increase in entropy of the physical system of the H2O molecules? Explain briefly. b) Is there a way to find the change in the sign of the entropy other than counting microstates? c) Determine the change in entropy for the physical system of the H2O molecules.arrow_forwardConstruct a table of all the possible combinations of numbers that can come up when you throw two dice. Your friend says, “Yes, I know that 7 is the most likely total number when two dice are thrown. But why 7?” Based on your table, answer your friend, and explain that, in thermodynamics, the situations that are likely to be observed are those that can be formed in the greatest number of ways.arrow_forward
- Consider two actual power plants operating with solar energy. Energy is supplied to one plant from a solar pond at 80°C and to the other from concentrating collectors that raise the water temperature to 600°C. Which of these power plants will have a higher efficiency? Explain.arrow_forwardIn an isolated system far from thermal equilibrium, as time passes,A. The total energy stays the same; the total entropy stays the same.B. The total energy decreases; the total entropy increases.C. The total energy stays the same; the total entropy increases.D. The total energy decreases; the total entropy stays the same.arrow_forwardImagine that you are rolling three typical six-sided dice. Each way that you can roll a particular outcome using these three dice represents a microstate for that outcome. How many ways can you roll a five with these three dice? That is, how many microstates exist for a roll of five with three dice? What is the entropy associated with an outcome of five in this situation?arrow_forward
- Consider a system with discrete energy levels. Which of the following statements is true? Choose one: a. The entropy of the system decreases as the temperature rises. b. If kBT is much smaller than the energy difference between the first excited state and the lowest energy level (=ground state), the system is most likely in the ground state. C. If the system has independent degrees of freedom, the partition function of the system is the sum of the partition functions related to these degrees of freedom. d. If kBT is much larger than the energy difference between the highest and lowest en the system is most likely in the highest energy state. rgy levels,arrow_forwardIf energy is always conserved, never created or destroyed, then why do most of the machines in our lives eventually stop working and have to be replaced? Explain using concepts from the textbook. The chapters and topics based on these questions come from these concepts. (Phase Changes Thermodynamics.)arrow_forwardDescribe the difference between a homogeneous and heterogeneous system. Also, provide reasons why modifications to the fundamental thermodynamic equations are necessary.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY