A 1.00-mol sample of an ideal monatomic gas is taken through the cycle shown in Figure P18.63. The process A→B is a reversible isothermal expansion. Calculate (a) the net work done by the gas, (b) the energy added to the gas by heat, (c) the energy exhausted from the gas by heat, and (d) the efficiency of the cycle. (e) Explain how the efficiency compares with that of a Carnot engine operating between the same temperature extremes.
Figure P18.63
(a)
Net work done by the gas.
Answer to Problem 63P
Net work done by the gas is
Explanation of Solution
For an isothermal process AB, the work on the gas is
Here
Write the equation for work done in the process BC,
Here
Work done in the process CA is zero because the volume is constant.
Write the equation for met work done
Conclusion:
Substitute
Substitute
Substitute
Net work done by the gas is
(b)
Energy added to the gas by heat.
Answer to Problem 63P
Total energy absorbed by heat is
Explanation of Solution
The change in internal energy for the process AB is zero as it is isothermal.
Then,
Write the equation for specific heat capacity at constant volume
Here
Write the ideal gas equation in terms of temperature
Similarly,
Here
Write the equation for heat transfer for the process CA,
Substitute (V) in (VIII)
Write the equation for total energy absorbed by heat
Conclusion:
Substitute
Substitute
Substitute
Substitute
Total energy absorbed by heat is
(c)
Energy exhausted from the gas by heat.
Answer to Problem 63P
The energy exhausted is
Explanation of Solution
Write the equation for heat energy transferred
Here
Substitute
Substitute
Conclusion:
Substitute
The energy exhausted is
(d)
Efficiency of the cycle.
Answer to Problem 63P
The efficiency is
Explanation of Solution
Write the equation for efficiency an engine in terms of work done
Here
Conclusion:
Substitute
The efficiency is
(e)
Compare with the efficiency of a Carnot engine.
Answer to Problem 63P
The efficiency of this system is lower than the Carnot engine
Explanation of Solution
Write the equation for efficiency of a Carnot engine
Here
Conclusion:
Substitute
The efficiency of this system is much lower than the Carnot engine
Want to see more full solutions like this?
Chapter 18 Solutions
Principles of Physics: A Calculus-Based Text
- No chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forward
- a cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forward
- 2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forwardFrom number 2 and 3 I just want to show all problems step by step please do not short cut look for formulaarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning