Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 18, Problem 1OQ
To determine
The efficiency of the engine.
Expert Solution & Answer
Answer to Problem 1OQ
Option (b)
Explanation of Solution
Write the formula to find the work done by the engine
Here,
Write the formula to find the efficiency of engine
Here,
Conclusion:
Substitute
Substitute
Thus, the efficiency of the energy is
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
An electrical power station uses 1.68 x 1014 J of heat input with an efficiency of 29.7%.
(a) How much work is done?
(b) How much waste heat is produced by the station?
(c) What is the ratio of waste heat to work output?
waste heat
work output
As a gasoline engine is running, an amount of gasoline containing 16,000 J of chemical potential energy is burned in 1 s. During that second, the engine does 4,000 J of work.
(a) What is the engine's efficiency (in percent)?
%
(b) The burning gasoline has a temperature of about 4,100°F (2,500 K). The waste heat from the engine flows into air at about 82°F (301 K). What is the Carnot efficiency (in percent) of a heat engine operating between these two temperatures?
%
As a gasoline engine is running, an amount of gasoline containing 13,600 J of chemical potential energy is burned in 1 s. During that second, the engine does 3,400 J of work.
(a) What is the engine's efficiency (in percent)?
%
(b) The burning gasoline has a temperature of about 4,100°F (2,500 K). The waste heat from the engine flows into air at about 90°F (305 K). What is the Carnot efficiency (in percent)
of a heat engine operating between these two temperatures?
Need Help?
%
Read It
Chapter 18 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 18.1 - The energy input to an engine is 3.00 times...Ch. 18.3 - Prob. 18.2QQCh. 18.4 - Prob. 18.3QQCh. 18.6 - (a) Suppose you select four cards at random from a...Ch. 18.7 - Which of the following is true for the entropy...Ch. 18.7 - An ideal gas is taken from an initial temperature...Ch. 18.8 - True or False: The entropy change in an adiabatic...Ch. 18 - Prob. 1OQCh. 18 - Prob. 2OQCh. 18 - A refrigerator has 18.0 kJ of work done on it...
Ch. 18 - Prob. 4OQCh. 18 - Consider cyclic processes completely characterized...Ch. 18 - Prob. 6OQCh. 18 - Prob. 7OQCh. 18 - Prob. 8OQCh. 18 - A sample of a monatomic ideal gas is contained in...Ch. 18 - Assume a sample of an ideal gas is at room...Ch. 18 - Prob. 11OQCh. 18 - Prob. 1CQCh. 18 - Prob. 2CQCh. 18 - Prob. 3CQCh. 18 - Prob. 4CQCh. 18 - Prob. 5CQCh. 18 - Prob. 6CQCh. 18 - Prob. 7CQCh. 18 - Prob. 8CQCh. 18 - Prob. 9CQCh. 18 - Prob. 10CQCh. 18 - Prob. 11CQCh. 18 - Discuss three different common examples of natural...Ch. 18 - The energy exhaust from a certain coal-fired...Ch. 18 - Prob. 1PCh. 18 - Prob. 2PCh. 18 - Prob. 3PCh. 18 - Prob. 4PCh. 18 - Prob. 5PCh. 18 - Prob. 6PCh. 18 - Prob. 7PCh. 18 - Prob. 8PCh. 18 - Prob. 9PCh. 18 - Prob. 10PCh. 18 - Prob. 11PCh. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Prob. 14PCh. 18 - Argon enters a turbine at a rate of 80.0 kg/min, a...Ch. 18 - Prob. 16PCh. 18 - A refrigerator has a coefficient of performance...Ch. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - In 1993, the U.S. government instituted a...Ch. 18 - Prob. 21PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 24PCh. 18 - A heat pump used for heating shown in Figure...Ch. 18 - Prob. 26PCh. 18 - Prob. 27PCh. 18 - An ice tray contains 500 g of liquid water at 0C....Ch. 18 - Prob. 29PCh. 18 - Prob. 30PCh. 18 - Prob. 31PCh. 18 - (a) Prepare a table like Table 18.1 for the...Ch. 18 - Prob. 33PCh. 18 - Prob. 34PCh. 18 - Prob. 35PCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - Prob. 38PCh. 18 - Prob. 39PCh. 18 - Prob. 40PCh. 18 - Prob. 41PCh. 18 - Prob. 42PCh. 18 - (a) Find the kinetic energy of the moving air in a...Ch. 18 - Prob. 45PCh. 18 - Prob. 46PCh. 18 - Prob. 47PCh. 18 - An idealized diesel engine operates in a cycle...Ch. 18 - Prob. 49PCh. 18 - Prob. 50PCh. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - Prob. 53PCh. 18 - Prob. 54PCh. 18 - Prob. 55PCh. 18 - Prob. 56PCh. 18 - Prob. 57PCh. 18 - Prob. 58PCh. 18 - Prob. 59PCh. 18 - Prob. 60PCh. 18 - Prob. 61PCh. 18 - Prob. 62PCh. 18 - A 1.00-mol sample of an ideal monatomic gas is...Ch. 18 - Prob. 64PCh. 18 - Prob. 65P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that the coefficients of performance of refrigerators and heat pumps are related by COPref=COPhp1. Start with the definitions of the COP s and the conservation of energy relationship between Qh, QC, and W.arrow_forwardA heat engine extracts 45.0 kJ from the hot reservoir and exhausts 40.0 kJ into the cold reservoir. What are the work done and the efficiency?arrow_forwardIn performing 154.0 J of work, an engine exhausts 65.0 J of heat. What is the efficiency of the engine? e = 29arrow_forward
- In performing 100.0 J of work, an engine discharges 50.0 J of heat. What is the efficiency of the engine?arrow_forwardA typical coal-fired power plant burns 340 metric tons of coal every hour to generate 2.5 × 106 MJ of energy. One metric ton has a mass of 1000 kg and a metric ton of coal has a volume of 1.5 m^3. The heat of combustion is 28 MJ/kg. What is the power plant’s efficiency?arrow_forwardAs a gasoline engine is running, the amount of gasoline containing 15,000J of chemical potential energy is burned in 1 s. During that second, the engine does 3,000J of work. The burning gasoline has a temperature of about 2500 K. The waste heat from the engine flows into the air at about 300 K. What is the Carnot efficiency of a heat engine operating between these two temperatures?arrow_forward
- please answer the following As a gasoline engine is running, an amount of gasoline containing 12,000 J of chemical potential energy is burned in 1 s. During that second, the engine does 4,000 J of work. What is the engine's efficiency (in percent)? The burning gasoline has a temperature of about 4,300°F (2,600 K). The waste heat from the engine flows into air at about 88°F (304 K). What is the Carnot efficiency (in percent) of a heat engine operating between these two temperatures?arrow_forwardA heat engine receives 500 j of heat from its combustion process and loses 391 J through the exhaust and friction. What is it’s efficiency?arrow_forwardThe power output of a car engine running at 2300 rpmrpm is 300 kW . (a) How much work is done per cycle if the engine's thermal efficiency is 40.0 %?Give your answer in kJ. Win =7.83kJ (b)How much heat is exhausted per cycle if the engine's thermal efficiency is 40.0 %?Give your answer in kJ.arrow_forward
- A heat engine takes in 2500J and does 1500J of work. a) How much energy is expelled as waste? b) What is the efficiency of the engine?arrow_forwardSuppose a heat engine is connected to two energy reservoirs, one a pool of molten aluminum (660°C) and the other a block of solid mercury (−38.9°C). The engine runs by freezing 1.40 g of aluminum and melting 16.0 g of mercury during each cycle. The heat of fusion of aluminum is 3.97 105 J/kg; the heat of fusion of mercury is 1.18 104 J/kg. What is the efficiency of this engine? %arrow_forwardDuring a cyclic process, a heat engine absorbs 550 J of heat from a hot reservoir, does work and ejects an amount of heat 350 J into the surroundings (cold reservoir). Calculate the efficiency of the heat engine? Group of answer choices 0.4646 0.3636 0.2456 0.4578arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY