Design a voltage regulator circuit such as shown in Figure P2.21 so that
a.
The value of the input resistance, Ri.
Answer to Problem D2.25P
The value of resistance
Explanation of Solution
Given:
In the circuit,
Evaluating the
Evaluating the value of
Evaluating the value of
Substituting
Substituting
Substituting
Therefore, the value of resistance
b.
The source regulation and the variation in the output voltage.
Answer to Problem D2.25P
The source regulation is 4.44% and the variation in the output voltage is
Explanation of Solution
Given:
In the circuit,
The voltage
Evaluating
Evaluating the
For no load condition evaluating the value
Evaluating the value of
Substituting
Evaluating the value of
Evaluating the value of
Substituting
Evaluating the source regulation:
Therefore, the source regulation is 4.44% and the variation in the output voltage is
c.
The variation in the output voltage and the load regulation.
Answer to Problem D2.25P
The load regulation is
Explanation of Solution
Given:
In the circuit,
The voltage
The load resistance
For
Evaluating the value of
Evaluating the value of
When,
Applying Kirchhoff s current law to determine the current:
Evaluating the value of
Evaluating the load regulation:
Therefore, the load regulation is
Want to see more full solutions like this?
Chapter 2 Solutions
Microelectronics: Circuit Analysis and Design
Additional Engineering Textbook Solutions
Degarmo's Materials And Processes In Manufacturing
Fluid Mechanics: Fundamentals and Applications
Management Information Systems: Managing The Digital Firm (16th Edition)
Starting Out with C++: Early Objects (9th Edition)
Vector Mechanics For Engineers
Electric Circuits. (11th Edition)
- For the circuit shown in the Figure, if the diodes are silicon diodes with VD(on)=0.7 V, and VIn=50 sin wt V, V1 =7 V and V2 =13 V, then the value of VOUT (p-p) is: R1 D, D2 VIN VOUT vi E v2= Ca. 19.4 V Ob. 17.4 V Cc. 15.4 V Cd. 21.4 Varrow_forward(a) State one possible reason why the diodes have different knee voltage values. 2. Figure A.1 shows I-V characteristics of two diodes, namely A and B. Diode A has UTM higher dynamic resistance than diode B. 5 UTM U UTM Ip UTM TM 3 UTM UTM O UTM UTM UTM UTM & UTM 03 TM UTM 0.68 VD Figure A.1 State one possible reason why the diodes have different knee voltage values. 5 UTM & UTM M 3 UTM (b) Based on Figure A.1, identify the knee voltage of UTM (c) Draw with complete labelling an equivalent circuit that represents the circuit in UFigure A.2. Consider practical diode model. TM 5 UTM 5 UPde BE UTM & UTM & UTM 1 ΚΩ Diode B 5 UTM O UTM UTM & UTM & UTM 1.5 V 5 UTM UT 5 UTM 3 V 5 UTM O UTM Figure A.2 M G UTM 5 UTM 5 UTM & UTM 5 UTM UTMarrow_forwardFor the circuit shown in the Figure, if the diodes are silicon diodes with Vp(on)=0.7 V, and VIN=50 sin wt V, V1 =6 V and V2 = 16 V, then the value of VouTP-p) is: R, D VaN Vout v1事 2章 Oa. 25.4 V Ob. 27.4 V Oc. 29.4 V Od. 23.4 Varrow_forward
- In the figure given we have u(t)=10. cosot [V]. We assume the diodes and the A-meter (A) to be ideal. A u(t) a) Plot the waveform of the current flowing through the A-m in scale. b) What is the reading of the A-m, if it is moving-coil type? c) What is the reading of the A-m, if it is moving-iron type? d) Calculate the power factor of the WHOLE structure. R1 1 R2 102arrow_forwardThe following figure shows a Zener diode regulator designed to hold 5.0 V at the output. Assume the Zener resistance is zero and the Zener current ranges from 2 mA minimum (2x) to 30 mA maximum (IZM). What are the minimum and maximum input source voltages for these currents? Vs = ? R₁ W 560 02 Vz +5.0 Varrow_forwardConsider the circuit shown in Figure 2. The cut-in voltage of each diode is . Let and assume both diodes are conducting. Determine if this is a valid assumption and explain your answer. And calculate the values of IR, ID, Ip2, and V.. Rj =1.7 kQ ww VB =1 V D1 Dz R2D 4 kQ Figure 2arrow_forward
- Q1/Consider the circuit in Figure with a transformer of 10:1 transformation ratio and the diodes are silicon. a) What type of circuit is this? (b) What is the total peak secondary voltage? (c) Find the voltage value across the resistor (d) Sketch the voltage waveform across RL (e) What is the PIV for each diode? D3 D 120 V Pisez) Vpouo D D 10 kn lleeearrow_forwardConsider the diode circuit shown below. If Vs is a sinewave with a peak amplitude of 12 Volts at 60Hz, and diodes D1 & D2 are considered ideal, sketch the appearance of the waveform at node voltage Vout . Sketch the appearance of the waveform at Vout .arrow_forward3: Using silicon diode design a clamper that will produce output V,-20Sin wt+10 (v) when the input voltage is Vo=20Sin wt-10 (V).Draw the circuit diagram and the input and output signals. 4:The 6-V zener diode has a maximum rated power dissipated of 690 mw.Its reveres current must be at least 3mA to keep it in breakdown. Find a suitable value for Rs if V; can vary from 9v to 12v and Ri. can vary from 5000 to 1.2KO.arrow_forward
- Q2:- Find the level of Vo for each circuit shown in the Figure below. Also, determine the status of each diode; if it is forward or reverses biasing. Assume all diodes are silicone with 0.7v drop. +5 V +15 V -10 V (12 Marks) R DI +5 VoK D +5 VoK DI -5 VoH -5 Vo4 D2 D2 D2 +5 VoH D3 +5 Vo4 D3 -10 VoK D4 V. -5 Vo K (a) (b)arrow_forwardDetermine which diodes are forward-biased and which are reverse-biased in the configurations.. Assuming a 0.7-V drop across each forward-biased diode, determine the output voltage.arrow_forwardQ1 Assume that each diode has a turn-on voltage 0.7V in the circuit shown in Figure Q1. By using the constant voltage drop model: 1kN D1 D2 2kN 4k2 6V 3V 4V Figure Q1 a) Show that it is not possible that D1 is on and D2 is off. (Hint: show a contradiction) b) Show that both D1 and D2 are on.arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,