Microelectronics: Circuit Analysis and Design
4th Edition
ISBN: 9780073380643
Author: Donald A. Neamen
Publisher: McGraw-Hill Companies, The
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.32P
a.
To determine
To plot: The graph of
b.
To determine
To plot: The graph of
c.
To determine
To compare: The results of part (a) and (b) by computer simulator.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(b)
Discuss the impact of connecting a large capacitor filter across the
load in Figure Q1(ii). Use appropriate waveform sketch to aid your
discussion.
+ Vp -
Us
R2
RL
Vs (
(i)
(ii)
Figure Q1.
Single phase half bridge rectifier:
(i) with a Thyristor
(ii) with a Diode
a) Determine the output voltage for all input voltages values.
b) Sketch the overall output waveform, Vo(t).
Vps = 10 V
R = 0.1k02
ww
-ovo
R₁.
Consider the Zener diode circuit shown in figure. The
Zener diode voltage is Vz= 5.8V at Iz= 10mA and the
Zener resistance is rz = 200.
a) Find the output voltage for RL = 1k0
b) Find the change in the output voltage when the
load resistance varies +ARL.
Chapter 2 Solutions
Microelectronics: Circuit Analysis and Design
Ch. 2 - Repeat Example 2.1 if the input voltage is...Ch. 2 - Consider the bridge circuit shown in Figure 2.6(a)...Ch. 2 - Assume the input signal to a rectifier circuit has...Ch. 2 - The input voltage to the halfwave rectifier in...Ch. 2 - Consider the circuit in Figure 2.4. The input...Ch. 2 - The circuit in Figure 2.5(a) is used to rectify a...Ch. 2 - The secondary transformer voltage of the rectifier...Ch. 2 - Determine the fraction (percent) of the cycle that...Ch. 2 - The Zener diode regulator circuit shown in Figure...Ch. 2 - Repeat Example 2.6 for rz=4 . Assume all other...
Ch. 2 - Consider the circuit shown in Figure 2.19. Let...Ch. 2 - Suppose the currentlimiting resistor in Example...Ch. 2 - Suppose the power supply voltage in the circuit...Ch. 2 - Design a parallelbased clipper that will yield the...Ch. 2 - Sketch the steadystate output voltage for the...Ch. 2 - Consider the circuit in Figure 2.23(a). Let R1=5k...Ch. 2 - Determine the steadystate output voltage O for the...Ch. 2 - Design a parallelbased clipper circuit that will...Ch. 2 - Consider the circuit shown in Figure 2.38, in...Ch. 2 - Consider the circuit shown in Figure 2.39. The...Ch. 2 - Repeat Example 2.11 for the case when R1=8k ,...Ch. 2 - The cutin voltage of each diode in the circuit...Ch. 2 - Prob. 2.12TYUCh. 2 - Consider the OR logic circuit shown in Figure...Ch. 2 - Consider the AND logic circuit shown in Figure...Ch. 2 - (a) Photons with an energy of hv=2eV are incident...Ch. 2 - Determine the value of resistance R required to...Ch. 2 - What characteristic of a diode is used in the...Ch. 2 - Prob. 2RQCh. 2 - Describe a simple fullwave diode rectifier circuit...Ch. 2 - Prob. 4RQCh. 2 - Prob. 5RQCh. 2 - Describe a simple Zener diode voltage reference...Ch. 2 - What effect does the Zener diode resistance have...Ch. 2 - What are the general characteristics of diode...Ch. 2 - Describe a simple diode clipper circuit that...Ch. 2 - Prob. 10RQCh. 2 - What one circuit element, besides a diode, is...Ch. 2 - Prob. 12RQCh. 2 - Describe a diode OR logic circuit. Compare a logic...Ch. 2 - Describe a diode AND logic circuit. Compare a...Ch. 2 - Describe a simple circuit that can be used to turn...Ch. 2 - Consider the circuit shown in Figure P2.1. Let...Ch. 2 - For the circuit shown in Figure P2.1, show that...Ch. 2 - A halfwave rectifier such as shown in Figure...Ch. 2 - Consider the battery charging circuit shown in...Ch. 2 - Figure P2.5 shows a simple fullwave battery...Ch. 2 - The fullwave rectifier circuit shown in Figure...Ch. 2 - The input signal voltage to the fullwave rectifier...Ch. 2 - The output resistance of the fullwave rectifier in...Ch. 2 - Repeat Problem 2.8 for the halfwave rectifier in...Ch. 2 - Consider the halfwave rectifier circuit shown in...Ch. 2 - The parameters of the halfwave rectifier circuit...Ch. 2 - The fullwave rectifier circuit shown in Figure...Ch. 2 - Consider the fullwave rectifier circuit in Figure...Ch. 2 - The circuit in Figure P2.14 is a complementary...Ch. 2 - Prob. 2.15PCh. 2 - A fullwave rectifier is to be designed using the...Ch. 2 - Prob. 2.17PCh. 2 - (a) Sketch o versus time for the circuit in Figure...Ch. 2 - Consider the circuit shown in Figure P2.19. The...Ch. 2 - Consider the Zener diode circuit shown in Figure...Ch. 2 - Consider the Zener diode circuit shown in Figure...Ch. 2 - In the voltage regulator circuit in Figure P2.21,...Ch. 2 - A Zener diode is connected in a voltage regulator...Ch. 2 - Consider the Zener diode circuit in Figure 2.19 in...Ch. 2 - Design a voltage regulator circuit such as shown...Ch. 2 - The percent regulation of the Zener diode...Ch. 2 - A voltage regulator is to have a nominal output...Ch. 2 - Consider the circuit in Figure P2.28. Let V=0 ....Ch. 2 - The secondary voltage in the circuit in Figure...Ch. 2 - The parameters in the circuit shown in Figure...Ch. 2 - Consider the circuit in Figure P2.31. Let V=0 (a)...Ch. 2 - Prob. 2.32PCh. 2 - Each diode cutin voltage is 0.7 V for the circuits...Ch. 2 - The diode in the circuit of Figure P2.34(a) has...Ch. 2 - Consider the circuits shown in Figure P2.35. Each...Ch. 2 - Plot O for each circuit in Figure P2.36 for the...Ch. 2 - Consider the parallel clipper circuit in Figure...Ch. 2 - A car’s radio may be subjected to voltage spikes...Ch. 2 - Sketch the steadystate output voltage O versus...Ch. 2 - Prob. D2.40PCh. 2 - Design a diode clamper to generate a steadystate...Ch. 2 - For the circuit in Figure P2.39(b), let V=0 and...Ch. 2 - Repeat Problem 2.42 for the circuit in Figure...Ch. 2 - The diodes in the circuit in Figure P2.44 have...Ch. 2 - In the circuit in Figure P2.45 the diodes have the...Ch. 2 - The diodes in the circuit in Figure P2.46 have the...Ch. 2 - Consider the circuit shown in Figure P2.47. Assume...Ch. 2 - The diode cutin voltage for each diode in the...Ch. 2 - Consider the circuit in Figure P2.49. Each diode...Ch. 2 - Assume V=0.7V for each diode in the circuit in...Ch. 2 - The cutin voltage of each diode in the circuit...Ch. 2 - Let V=0.7V for each diode in the circuit in Figure...Ch. 2 - For the circuit shown in Figure P2.54, let V=0.7V...Ch. 2 - Assume each diode cutin voltage is V=0.7V for the...Ch. 2 - If V=0.7V for the diode in the circuit in Figure...Ch. 2 - Let V=0.7V for the diode in the circuit in Figure...Ch. 2 - Each diode cutin voltage in the circuit in Figure...Ch. 2 - Let V=0.7V for each diode in the circuit shown in...Ch. 2 - Consider the circuit in Figure P2.61. The output...Ch. 2 - Consider the circuit in Figure P2.62. The output...Ch. 2 - Prob. 2.63PCh. 2 - Consider the circuit shown in Figure P2.64. The...Ch. 2 - The lightemitting diode in the circuit shown in...Ch. 2 - The parameters of D1 and D2 in the circuit shown...Ch. 2 - If the resistor in Example 2.12 is R=2 and the...Ch. 2 - Consider the photodiode circuit shown in Figure...Ch. 2 - Consider the fullwave bridge rectifier circuit....Ch. 2 - Design a simple dc voltage source using a...Ch. 2 - A clipper is to be designed such that O=2.5V for...Ch. 2 - Design a circuit to provide the voltage transfer...
Knowledge Booster
Similar questions
- The Figure 2 shows an electronic circuit designed for supplying power to a load (R1). The supply voltage 235V (RMS, AC) at frequency of 50HZ. The required DC voltage and power for the load are 24V and 3.6 W respectively. The Electrical Components of this AC to DC converter are: A full-wave rectifier to convert AC voltage to DC voltage. A regulator with transistor and Zener diode to ensure a constant voltage and power for the load. D1 Iide 91 Vaut VLoad D2 D3 Vde VI sine R1 RL Regulate Reetifier Figure 2. Complete Circuit Assume that the diodes are real diodes (NOT ideal diodes). The following information is available: The collector to base resistor of the regulator R1 = 5.0 k The transistor Q1 with B value of 24 is used for the regulator circuit. Determine the following quantities for this electronic device and fill the table below: Question Answer The voltage of Zener Diode (Vz) The current in R1 The DC current into the regulator | (Idc) Base current of transistor (IB) Collector…arrow_forwardQ1 The Zener regulator circuit in Figure Q1 has the following values: R₁ = 0.22 kn, Zener voltage, V₂ = 8 V and the maximum power rating of the Zener diode is 400 mW. In order to maintain this regulator circuit with load voltage, V₁ at 8 V and not exceed the maximum power rating of the Zener diode; determine the: (a) minimum input voltage, Vi min (b) maximum input voltage, Vimaxarrow_forwardQ2. A full-wave controlled rectifier circuit with resistive load shown below: Calculate the firing angle (a.) if it is required to obtain an average output voltage of 70% of the maximum possible average output voltage. • Sketch the output Vg & ig Waveform and determine the average current. 1:2 a, = 15 R= 302 Vs -V2x110 Sin 120nt cot VRarrow_forward
- A single phase – half wave controlled rectifier with freewheeling diode is supplying a load consistingseries connected a resistor and an inductance from a 70.7V (RMS), 50Hz sinusoidal AC source.The firing delay of the thyristor is 90° and the load values are R=10Ω, L=0.1 H. Define the loadcurrent expression and draw the load current by calculating for first two periods. And calculate theaverage values of the load voltage and current.arrow_forwardA single phase – half wave controlled rectifier with freewheeling diode is supplying a load consistingseries connected a resistor and an inductance from a 70.7V (RMS), 50Hz sinusoidal AC source.The firing delay of the thyristor is 90° and the load values are R=10Ω, L=0.1 H. Define the loadcurrent expression and draw the load current by calculating for first two periods. And calculate theaverage values of the load voltage and current.arrow_forward(a) Calculate and sketch the output voltage Vo given the input voltage graph Vi as shown in Figure Q2(a). Assume the diode is Silicon. 20 Vo -10 3V Figure Q2(a) (b) For the Zener diode configuration given in Figure Q2(b), i determine the minimum value of R, and I, that will result in VRz being maintained at 8 V. calculate the maximum value of R1 based on the given maximum zener current, 1. IzM, so that the zener can operate in safe range. 5 kQ Iz V;=8 V IzM=1 mA Vi= 20 V Figure Q2(b)arrow_forward
- Sketch the overall output waveform, Vo(t)arrow_forwardPower supply circuit is delivering 0.5 A and an average voltage 20 V to the load as shown in the circuit below. The ripple voltage of the half wave rectifier is 0.5 V and the diode is represented using constant voltage model. The smoothing capacitor value is equal to 220V rmsh soHz} VL-DC =20V 0.01 F 0.02 F 0.0167 F None of the abovearrow_forwardThe four diodes used in a bridge rectifier circuit have forward resistances which may be considered constant at 12 and an infinite reverse resistance. The alternating supply voltage is 240 V r.m. s. and resistive load is 48 2. Calculate (i) mean load current (i i) rectifier efficiency and (i i i)power dissipated in each diode.arrow_forward
- Q2 (a) Figure Q2(a) shows a clipper circuit made with a germanium diode. Given the voltage input, Vin = 20 Vp-p, VDc = 5 V, Rs = 10 N and R1=1 kN. (i) Sketch the full cycle of input voltage, Vin(e) in sinusoidal waveform. (ii) Determine the output voltage values for all input values. Show all the calculations and support your answers with the aid of diagram. (iii) Sketch the overall output waveform, VoUT (1).- R. + Vin Si Ge R VOUT Vpc Figure Q2(a)arrow_forwardThe four diodes used in a bridge rectifier circuit have forward resistances which may be considered constant at 1 ohm and infinite reverse resistance. The alternating supply voltage is 220 V r.m.s. and load resistance is 580 ohm. Calculate (i) mean load current and (ii) power dissipated in each diode.arrow_forwardDraw circuit diagram of a full-wave controlled rectifier and draw the wave shapes of output voltage and current for R-L load with sinusoidal input. You have to design a full-wave AC to DC converter circuit to have output average voltage of 40 and 50 W power to a 100 Ω resistive load from a source of 60 V. Is the design feasible? Why?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,