Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 72AP
(a)
To determine
The time duration which rocket is above the ground.
(b)
To determine
The maximum height reached by rocket.
(c)
To determine
The velocity just before reaching the ground.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 81.0 m/s at ground level. The engines then fire, and the rocket accelerates upward at 4.10 m/s2 until it reaches an altitude of 1190 m. At that point its engines fail, and the rocket goes into free fall, with an acceleration of −9.80 m/s2. (You will need to consider the motion while the engine is operating and the free-fall motion separately.)
(a) For what time interval is the rocket in motion above the ground? (b) What is its maximum altitude? km(c) What is its velocity just before it hits the ground?
A missile silo is used to launch test rockets vertically upward out of the silo, giving the rocket an initial speed of 79.0 m/s at ground level. As the rocket clears the silo, the engines fire, and the rocket accelerates upward at 4.20 m/s2 until it reaches an altitude of 1,080 m. At that point its engines fail, and the rocket goes into free fall, with an acceleration of −9.80 m/s2.(You will need to consider the motion while the engine is operating and the free-fall motion separately. Due to the nature of this problem, do not use rounded intermediate values in your calculations—including answers submitted in WebAssign.)
(a)
Determine the velocity of the rocket (in m/s) at the end of the engine burn time and also the burn time (in s). (For the velocity, indicate the direction with the sign of your answer.)
velocity at end of engine burn timev= m/sengine burn timet= s
(b)
Determine the maximum altitude of the rocket (in m) and the total time (in s) for the rocket to reach this…
An Osprey can fly horizontally (not diving) at a maximum speed of 70.0 km/hr. The bird takes off from rest at the edge of a cliff, heading east, and accelerates at a rate of 1.21 m/s2. The osprey can decelerate at higher rate of 2.43 m/s2. The Osprey can reach top speeds of about 84 mph. When doing so, it does not flap its wings. Rather, it relies on its gravitational force to accelerate it downwards.
a. Assuming that it starts from rest, and assuming that drag forces are slim, how long will it take for the osprey to reach its top speed?
b. How far does it travel during this time?
c. Near the top speed, drag forces become important, and in fact the terminal velocity is determined by the drag force. Assuming that the osprey's body can be modeled as a cylinder, with its cross-sectional area equal to that of a circle with radius of 10 cm, what is the coefficient of drag C for a hawk?
Chapter 2 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A lunar lander is making its descent to Moon Base I . The lander descends slowly under the retro-thrust of its descent engine. The engine is cut off when the lander is 5.0 m above the surface and has a downward speed of 0.8 m>s.With the engine off, the lander is in free fall. What is the speed of the lander just before it touches the surface? The acceleration due to gravity on the moon is 1.6 m/s2.arrow_forwardA catapult launches a test rocket vertically upward from a well, giving the rocket an initial speed of 80.8 m/s at ground level. The engines then fire, and the rocket accelerates upward at 3.90 m/s2 until it reaches an altitude of 1200 m. At that point its engines fail, and the rocket goes into free fall, with an acceleration of −9.80 m/s2 For what time interval is the rocket in motion above the ground? What is the maximum altitude? What is its velocity just before it hits the ground?arrow_forwardA model rocket is fired vertically upward from rest. Its acceleration for the first three seconds is a(t)=96t at which time the fuel is exhausted and it becomes a freely "falling" body. 19 seconds later, the rocket's parachute opens, and the (downward) velocity slows linearly to -16 ft/s in 5 s. The rocket then "floats" to the ground at that rate. At what time does the rocket reach its maximum height? And what is that height?arrow_forward
- A model rocket is initially a height of H = 2.00 m above the ground. At t = 0, it is released from rest and has its engines ignited. Its engines generate an acceleration in the positive y-direction which changes with time of magnitude ßt, where = 18.00 m/s³. This acceleration doesn't include the effects of gravity. After 5.00 seconds have passed, the rocket's fuel will run out, and will no longer provide an upward thrust. Q4.1 Part (a) (a) Find the velocity and position of the rocket for all times t > 0. No files uploaded Q4.2 Part (b) H+ (b) What is the maximum height the rocket will reach? No files uploaded Q4.3 Part (c) (c) How long until the rocket returns to the ground? No files uploaded Q4.4 Part (d) (d) What is the minimum height, H, necessary for the rocket to safely launch? No files uploadedarrow_forwardA rocket starts from rest and moves upward from What is the height of the rocket above the surface of the earth at t = 10.0 s? the surface of the earth. For the first 10.0 s of its motion, the vertical acceleration of the rocket is (2.80 m/s) t, where the +y- given by ay direction is upward. Express your answer with the appropriate units.arrow_forwarda rocket initially at rest, is fired vertically with an upward acceleration of 10ms/s. at an altitude of 0.5km, the engine of the rocket cuts off. what is the maximum altitude reached by the rocket ?arrow_forward
- A rocket moves straight upward, starting from rest with an acceleration of +29.6 m/s2. It runs out of fuel at the end of 5.37 s and continues to coast upward, reaching a maximum height before falling back to Earth. (a) Find the rocket's velocity and position at the end of 5.37 s. vb = m/s yb = m (b) Find the maximum height the rocket reaches.m(c) Find the velocity the instant before the rocket crashes on the ground.m/sarrow_forwardDuring your summer internship for an aerospace company, you are asked to design a small research rocket. The rocket is to be launched from rest from the earth's surface and is to reach a maximum height of 980 m above the earth's surface. The rocket's engines give the rocket an upward acceleration so it moves with the acceleration of 16.0 m/s2 during the time T, that they fire. After the engines shut off, the rocket is in free fall. Ignore air resistance. What must be the value of T in order for the rocket to reach the required altitude?arrow_forwardA swimmer bounces straight up from a diving board and falls feet first into a pool. She starts with a velocity of 4.0 m/s, and her takeoff point is 1.1 m above the pool. Which of these two valid methods is the easiest to find how long her feet are in the air? Group of answer choices Break the problem in two parts. For part 1, find the time to reach her highest point by using v0 = 4 m/s, a = -9.8 m/s2, and vf = 0 m/s. For part 2, you can use the highest point above the board found in the previous problem and add it to her height above the pool. Then, using v0 = 0 m/s and a = -9.8 m/s2, you can find the time to reach the ground. Since you only care about the end points in this case, you can use v0 = 4 m/s, a = -9.8 m/s2, and Δy = -1.1 m to find the time to reach the ground.arrow_forward
- A ball is thrown straight up from the edge of the roof of a building. A second ball is dropped from the roof a time of 1.12 s later. You may ignore air resistance. If the height of the building is 20.4 m, what must the initial speed be of the first ball if both are to hit the ground at the same time? Consider the same situation, but now let the initial speed v0 of the first ball be given and treat the height h of the building as an unknown. What must the height of the building be for both balls to reach the ground at the same time for v0 = 8.50 m/s. If v0 is greater than some value vmax, a value of h does not exist that allows both balls to hit the ground at the same time. Solve for vmax. If v0 is less than some value vmin, a value of h does not exist that allows both balls to hit the ground at the same time. Solve for vmin.arrow_forwardA particle moves along the x axis. It is initially at the position 0.250 m, moving with velocity 0.090 m/s and acceleration -0.430 m/s2. Suppose it moves with constant acceleration for 5.80 s. (a) Find the position of the particle after this time. (b) Find its velocity at the end of this time interval. m/s We take the same particle and give it the same initial conditions as before. Instead of having a constant acceleration, it oscillates in simple harmonic motion for 5.80 s around the equilibrium position x = 0. Hint: the following problems are very sensitive to rounding, and you should keep all digits in your calculator. (c) Find the angular frequency of the oscillation. Hint: in SHM, a is proportional to x. /s (d) Find the amplitude of the oscillation. Hint: use conservation of energy. (e) Find its phase constant e, if cosine is used for the equation of motion. Hint: when taking the inverse of a trig function, there are always two angles but your calculator will tell you only one and…arrow_forwardA rocket, initially at rest on the ground, accelerates upward with a constant acceleration of 94.0 m/s2 until it reaches a speed of 1.50E2 m/s when the engines are cut off. After that, the rocket is in free-fall. What is the maximum height reached by the rocket?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY