Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 14P
To determine
The average acceleration of the ball for the given time interval.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 50.0-g Super Ball traveling at 25.0 m/s bounces off a brick wall and rebounds at 22.0 m/s. A high
speed cam- era records this event. If the ball is in contact with the wall for 3.50 ms, what is the
magnitude of the average acceleration of the ball during this time interval? Note: 1 ms =103 s.
A 50.0-g Super Ball travelling at 25.0 m/s bounces off a brick wall and rebounds at 22.0 m/s. A high-speed camera records this event. If the ball is in contact with the wall for 3.50 ms, what is the magnitude of the average acceleration of the ball during this time interval?
A tennis ball with a speed of 27.8 m per s is moving perpendicular to a wall. After striking the wall, the ball rebounds in the opposite direction with a speed of 20.016 m per s. If the ball is in contact with the wall for 0.0133 s, what is the average acceleration of the ball while it is in contact with the wall? Take toward the wall to be the positive direction. Answer in units of m per s2.
Chapter 2 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A a vs. t graph is drawn for a car moving in one direction. The graph shows a horizontal line at a = 5 m/s2 from t = 0 s to t = 5 s. What is the velocity of the ball at t= 5 s? Assume the car is initially at rest. (Answer is given as 25m/s, just need help knowing how to solve it.)arrow_forwardA tennis ball with a velocity of 24.4 m/s is thrown perpendicularly at a wall. After striking the wall, the ball rebounds in the opposite direction with a speed of 16 m/s. If the ball is in contact with the wall for 0.013 s, what is the average acceleration of the ball while it is in contact with the wall? Answer in units of m/s2.arrow_forwardA speed skater moving to the left across frictionless ice at 8.4 m/sm/s hits a 4.8-mm-wide patch of rough ice. She slows steadily, then continues on at 5.8 m/sm/s. What is the magnitude of her acceleration on the rough ice?arrow_forward
- An initially motionless test car is accelerated uniformly to 135 km/hr in 8.08 seconds before striking a simulated deer. The car is in contact with the faux fawn for seconds, after which the car is measured to be traveling at 87.5 km/hr. What is the magnitude of the average acceleration of the car during the collision?arrow_forwardA bird rests on a branch in an aok tree, 12 m above the grassland, as it watches it's young birds. The bird suddenly needs to pass some solid waste .How fast is the solid waste traveling as it hits the grassland? A cat staring at the bird immediately notices something strange being released by the bird. How long does the cat have to react and get out of the way?arrow_forward1c. A student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of v0 = 18.5 m/s. The cliff is h = 20.0 m above a flat, horizontal beach as shown in the figure. Write the equations for the x- and y-components of the velocity of the stone with time. (Use the following as necessary: t. Let the variable t be measured in seconds. Do not include units in your answer.) vx= vy=arrow_forward
- A ball with a mass of 50 g is traveling at 25 m/s bounced off a brick wall and rebounded at 20 m/s. If a high speed camera was able to record the event and that the ball is known to have been in contact with the wall for 3.50 ms, what is the magnitude of the average acceleration of the ball during this time interval?arrow_forwardA rubber ball is shot straight up from the ground with speed vo. Simultaneously, a second rubber ball at height h directly above the first ball is dropped from rest. At what height above the ground do the balls collide? Your answer will be a symbolic expression in terms of vo, h, and g. What is the maximum value of h for which a collision occurs before the first ball falls back to the ground?arrow_forwardI am doing a free-fall experiment for Physics and I need to make a velocity vs. time graph using the average value of the final velocity. Do you know how I would be able to find the values for the velocity vs. time graph? The average value of the final velocity is 6.21954 m/s. It is question #9.arrow_forward
- Classes are canceled due to snow, so you take advantage of the extra time to conduct some physics experiments. You fasten a large toy rocket to the back of a sled and take the modified sled to a large, flat, snowy field. You ignite the rocket and observe that the sled accelerates from rest in the forward direction at a rate of 12.5 m/s2 for a time period of 3.50 s. After this time period, the rocket engine abruptly shuts off, and the sled subsequently undergoes a constant backward acceleration due to friction of 5.65 m/s2. After the rocket turns off, how much time does it take for the sled to come to a stop? time: By the time the sled finally comes to a rest, how far has it traveled from its starting point? distance traveled:arrow_forwardThe Cassini spacecraft traveled with a companion module, Huygens, that split off so that it could land on Saturn's moon, Titan. The acceleration due to gravity on the surface of Titan is 1.352 m/s?. If a piece of Huygens falls from a height of 1.40 m and lands on the surface of Titan, how long would the piece take to fall? Assume it starts from rest. 2.07 s 0.535 s 1.43 s 0.286 sarrow_forwardThe polar bear is an excellent swimmer, and it spends a large part of its time in the water. Suppose a polar bear wants to swim from an ice floe to a particular point on the shore. The bear dives into the water and begins swimming. As the bear swims, it tires and slows at a rate of 0.0122 m/s/s. By the time it reaches the shore, which is 40.1 m from where it dove into the water, its velocity is 2.13 m/s. How fast was the bear swimming when it first got into the water? ____________m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY