Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 17OQ
(a)
To determine
Order the positions of ball according to the descending order of speed.
(b)
To determine
Order the positions of ball according to the descending order of acceleration.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Bob proposed Alice to a marriage on the very top of a 30m building. Alice said yes. Bob then put the ring on Alice’s finger. Alice was very happy. She threw her hands up in the air. Unfortunately, the ring slipped from her finger and fell down due to gravity.Bob set up a camera to record the moment. Thus, he look at the footage and determine that the ring was going out of Alice’s hand with speed of vi =10m/s at an angle of θ=30 . The dimension of the building is given below.
(a) If the ring were to land on the terrace, how long would it take?(b) If the ring were to land on the Lawn, how long would it take?(c) Where should Bob search for the ring? Terrace or lawn? An answer with no support reasoning will recieve no credit.
In the children's book Nuts to You, a young squirrel named Jed is snatched up by a hawk. While in the air Jed manages to go limp, slip through the hawk's talons and fall to the forest floor. The hawk travels horizontally at a speed of 4.86m/s . (You may neglect any effects of air resistance as you answer the following questions). One second after being released, what is the y-component of Jed's velocity?
A particle performs a one-dimensional motion with the position given by the time equation x(t) = 1,3t4 - 2,0t3, where x is given in meters and t is given in seconds. At time t=0, the particle starts its motion at the origin x=0. At what instant (in seconds) does the particle reverse its direction of motion?
Chapter 2 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- you wake up in a strange room, and this time you drop a ball from a height of 1.79 m above the floor. The ball hits the floor 0.242 s after your drop it. You guess that you must have been taken to an alien planet with gravity different from Earth s. What is this planet s g (that is, the magnitude of the acceleration due to gravity on this planet)? 61.1 m/s^2 30.6 m/s^2 45.9 m/s^2 91.7 m/s^2arrow_forwardAnita is running to the right at 5 m/s, as shown. Balls 1 and 2 are thrown toward her at 10 m/s by friends standing on the ground. According to Anita, what is the speed of each ball?arrow_forwardAn object has an acceleration as a function of time given by (in m/s2): A = (3t2 + 3t) i + (7t3 + 6) j Given: at t=0.0 s, the object is at the origin with a velocity of 0.0 m/s. What is the magnitude of its velocity (in m/s) when t= 4 s ?arrow_forward
- You are on the roof of the physics building, 46 m above the ground. Your physics professor, who is 1.80 m tall, is walking alongside the building at a constant speed of 1.20 m/s. If you wish to drop an egg on your professor’s head, where should the professor be when you release the egg? Assume that the egg is in free fall.arrow_forwardAt time t0=0.0s, a car, starting from rest, moves south. It continues moving south, and by time tf =121s, it has covered a distance of d=6689m. Take north as the positive x direction, as indicated in the figure. Part A: What is the car's average speed, in meters per second, during this period? Part B: What is the car's displacement, in meters, during this period? Part C: What is the car's average velocity, in meters per second, during this period? Part D: A different car, after starting from rest at t0 =0.0s, travels for the same period, tf =121s, attaining a final velocity of vf =−30.0m/s. What is this car's average acceleration, in meters per squared seconds, during the period described?arrow_forwardA jet plane comes in for a landing with a speed of 120 m/s. The length of the runway is 500 m. From the instant the plane touches the runway, what is the magnitude of the acceleration needed to stop within the runway? Write your answer in terms of m/s2.arrow_forward
- The position of a particle in the xy-plane at time t is r(t) = (e¹) 1 + (40 e²¹) ₁. particle. Then find the particle's velocity and acceleration vectors at t = In 7. The equation for the path of the particle is y= j. Find an equation in x and y whose graph is the path of thearrow_forwardAn astronaut is playing with a ping pong paddle and ball in zero gravity. The astronaut is 12 m from a flat wall and floating toward it at 4 m/s. A ping pong ball bounces back and forth between his paddle and the wall at 11 m/s. Eventually, the astronaut reaches the wall and traps the ball against it. Now treat the “bounce” somewhat realistically. If the bounce lasts 25ms, what is the average acceleration of the ball during this time? Give the magnitude only in m/s^2.arrow_forwardOK, yet another strange awakening in a room with no windows. This time you drop a ball from a height of 1.79 m and it hits the floor 0.423 s after you drop it. This time you suspect you are on a rocket that has just left the surface of the Earth, and is still not too far above the ground. What do you deduce the rocket s acceleration to be?arrow_forward
- A thief is trying to escape from a parking garage after completing a robbery, and the thief’s car is speeding (v = 12 m/s) toward the door of the parking garage (Fig. P2.60). When the thief is L = 30 m from the door, a police officer flips a switch to close the garage door. The door starts at a height of 2.0 m and moves downward at 0.20 m/s. If the thief’s car is 1.4 m tall, will the thief escape?arrow_forwardA thief is trying to escape from a parking garage after completing a robbery, and the thief's car is speeding (v = 12 m/s) toward the door of the parking garage (Fig. P2.60). When the thief is L= 30 m from the door, a police officer flips a switch to close the garage door. The door starts at a height of 2.0 m and moves downward at 0.20 m/s. If the thief's car is 1.4 m tall, will the thief escape? Garage door L Figure P2.60arrow_forwardA red Mazda Miata (type of car) accelerates from rest at a rate of a₁ in the positive x direction for a total of 20.0 seconds. The Mazda then holds their speed and direction constant for a 20.0 additional seconds. Finally, while continuing in the positive x direction, the Mazda slows down at a rate of a2 until the car stops moving. We want to determine the total distance traveled by the Mazda and the average speed of the car if we know a₁ and ₂. (A) Sketch a graph of velocity versus time for this short trip. Label the time axis to indicate which portions of the curve(s) correspond to the above intervals. Identify and write knowns and unknowns (B) Without using numerical values, determine which physics equations of motion will help solve this problem. Simplify as useful for this particular case. (C) If a₁ = 2.0 m/s² and a₂ = -3.0 m/s² determine the total distance traveled during all intervals and the average velocity of the Mazda.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY