Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 18P

(a) Use the data in Problem 3 to construct a smooth graph of position versus time. (b) By constructing tangents to the x(t) curve, find the instantaneous velocity of the car at several instants. (c) Plot the instantaneous velocity versus time and, from this information, determine the average acceleration of the car. (d) What was the initial velocity of the car?

(a)

Expert Solution
Check Mark
To determine

To draw: The graph of position versus time.

Answer to Problem 18P

Therefore, the smooth graph of position versus time is shown in Figure I.

Explanation of Solution

Given information:

The following table contains the data of position of the car at various time instants.

t(s) 0 1.0 2.0 3.0 4.0 5.0
x(m) 0 2.3 9.2 20.7 36.8 57.5

Draw the graph of position versus time for the derby car.

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University, Chapter 2, Problem 18P , additional homework tip  1

Figure I

In the shown graph, the position of the car at various time instants is plotted in the vertical axis against the time along horizontal direction.

Conclusion:

Therefore, the smooth graph of position versus time is shown in Figure I.

(b)

Expert Solution
Check Mark
To determine

The instantaneous velocity of the car at various time instants.

Answer to Problem 18P

The instantaneous velocity of the car at t=1s is 2.3m/s , at t=2s is 4.2m/s , at t=3s is 6.9m/s , at t=4s is 9.1m/s and at t=5.0s is 11.5m/s .

Explanation of Solution

Given information:

The following table contains the data of position of the car at various time instants.

t(s) 0 1.0 2.0 3.0 4.0 5.0
x(m) 0 2.3 9.2 20.7 36.8 57.5

Draw the tangent line at the time instant of t=1s in the graph of position versus time for the derby car.

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University, Chapter 2, Problem 18P , additional homework tip  2

Figure II

Formula to calculate the instantaneous velocity of the car at t=1s from the shown graph is,

vt=1s=x1t1

  • vt=1s is the instantaneous velocity of the car at t=1s .
  • x1 is the position of the car at t=1s .

Substitute 2.3m for x1 and 1s for t1 in the above equation to find vt=1s .

vt=1s=2.3m1s=2.3m/s

Therefore, the instantaneous velocity of the car at t=1s is 2.3m/s .

The following table contains the data of position of the car at various time instants.

t(s) 0 1.0 2.0 3.0 4.0 5.0
x(m) 0 2.3 9.2 20.7 36.8 57.5

Draw the tangent line at the time instant of t=2s in the graph of position versus time for the derby car.

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University, Chapter 2, Problem 18P , additional homework tip  3

Figure III

Formula to calculate the instantaneous velocity of the car at t=2s from the shown graph is,

vt=2s=x2t2

  • vt=2s is the instantaneous velocity of the car at t=2s .
  • x2 is the position of the car at t=2s .

Substitute 9.2m for x2 and 2s for t2 in the above equation to find vt=2s .

vt=2s=9.2m2s=4.6m/s

Therefore, the instantaneous velocity of the car at t=2s is 4.6m/s .

The following table contains the data of position of the car at various time instants.

t(s) 0 1.0 2.0 3.0 4.0 5.0
x(m) 0 2.3 9.2 20.7 36.8 57.5

Draw the tangent line at the time instant of t=3s in the graph of position versus time for the derby car.

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University, Chapter 2, Problem 18P , additional homework tip  4

Figure IV

Formula to calculate the instantaneous velocity of the car at t=3s from the shown graph is,

vt=3s=x3t3

  • vt=3s is the instantaneous velocity of the car at t=3s .
  • x3 is the position of the car at t=3s .

Substitute 20.7m for x3 and 3s for t3 in the above equation to find vt=3s .

vt=3s=20.7m3s=6.9m/s

Therefore, the instantaneous velocity of the car at t=3s is 6.9m/s .

The following table contains the data of position of the car at various time instants.

t(s) 0 1.0 2.0 3.0 4.0 5.0
x(m) 0 2.3 9.2 20.7 36.8 57.5

Draw the tangent line at the time instant of t=4s in the graph of position versus time for the derby car.

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University, Chapter 2, Problem 18P , additional homework tip  5

Figure V

Formula to calculate the instantaneous velocity of the car at t=4s from the shown graph is,

vt=4s=x4t4

  • vt=4s is the instantaneous velocity of the car at t=4s .
  • x4 is the position of the car at t=4s .

Substitute 36.8m for x4 and 4s for t4 in the above equation to find vt=4s .

vt=4s=36.8m4s=9.2m/s

Therefore, the instantaneous velocity of the car at t=4s is 9.2m/s .

The following table contains the data of position of the car at various time instants.

t(s) 0 1.0 2.0 3.0 4.0 5.0
x(m) 0 2.3 9.2 20.7 36.8 57.5

Draw the tangent line at the time instant of t=4s in the graph of position versus time for the derby car.

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University, Chapter 2, Problem 18P , additional homework tip  6

Figure VI

Formula to calculate the instantaneous velocity of the car at t=4s from the shown graph is,

vt=5s=x5t5

  • vt=5s is the instantaneous velocity of the car at t=5s .
  • x5 is the position of the car at t=5s .

Substitute 57.5m for x5 and 5s for t5 in the above equation to find vt=5s .

vt=5s=57.5m5s=11.5m/s

Conclusion:

Therefore, the instantaneous velocity of the car at t=5s is 11.5m/s .

(c)

Expert Solution
Check Mark
To determine

The average acceleration of the car.

Answer to Problem 18P

The average acceleration of the car is 2.3m/s2 .

Explanation of Solution

The following table contains the instantaneous velocity of the car at various times instant.

t(s) 1.0 2.0 3.0 4.0 5.0
v(t)m/s 2.3 4.6 6.9 9.2 11.5

The graph of instantaneous velocity versus time for the derby car is shown below.

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University, Chapter 2, Problem 18P , additional homework tip  7

Figure VII

The figure VII shows that velocity of the car increases linearly, it means the acceleration of the car is constant throughout the motion.

Thus, the slope of this graph gives the average acceleration of the car.

From the graph, the slope of the graph is 2.3m/s2 .

Conclusion:

Therefore, the average acceleration of the car is 2.3m/s2 .

(d)

Expert Solution
Check Mark
To determine

The initial velocity of the car.

Answer to Problem 18P

The initial velocity of the car is zero.

Explanation of Solution

The equation for the velocity of the car obtained from the graph is,

v(t)=(2.3m/s2)t (I)

The first equation of motion gives the velocity of an object at any instant.

v(t)=vi(t)+at (II)

  • vi(t) is the initial velocity of the car.

Compare equation (I) and (II).

vi(t)=0

Thus, the initial velocity of the car is zero.

Conclusion:

Therefore, the initial velocity of the car is zero.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls will upvote
Correct answer  No chatgpt pls will upvote
Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.

Chapter 2 Solutions

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University

Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY