Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 13OQ
A student at the top of a building of height h throws one ball upward with a speed of vi and then throws a second ball downward with the same initial speed vi . Just before it reaches the ground, is the final speed of the ball thrown upward (a) larger, (b) smaller, or (c) the same in magnitude, compared with the final speed of the ball thrown downward?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A pebble rolls off the roof of Science Hall and falls vertically. Just before it reaches the ground, the pebble's speed is 17 m/s. Neglect air resistance and determine the height of Science Hall.
An attacker at the base of a castle wall 3.75 m high throws a rock straight up with speed 7.50 m/s from a height of 1.60 m above the ground.
(a) Will the rock reach the top of the wall?
Yes
No
(b) If so, what is its speed at the top? If not, what initial speed must it have to reach the top?
m/s
Enter a number.
(c) Find the change in speed of a rock thrown straight down from the top of the wall at an initial speed of 7.50 m/s and moving between the
same two points.
m/s
(d) Does the change in speed of the downward-moving rock agree with the magnitude of the speed change of the rock moving upward
between the same elevations?
Yes
No
(e) Explain physically why it does or does not agree.
A skier starts from rest from a height of 20 m and skis down the slope into a valley and back up a slope of 12 m high with respect to the valley. What speed does the skier have the moment he reaches the height of 12 m?
Chapter 2 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A student at the top of a building of height h throws one ball upward with a speed of i and then throws a second ball downward with the same initial speed i. Just before it reaches the ground, is the final speed of the ball thrown upward (a) larger, (b) smaller, or (c) the same in magnitude, compared with the final speed of the ball thrown downward?arrow_forwardSasha stands on the ground and tosses a baseball perfectly vertically up to her friend Helge, who catches it by reaching outside the window of his apartment building. She gives the ball an initial speed of vi= 19.7 m/s, and Helge catches it 1.40 s later when it reaches his hands. If Helge were to drop the baseball from rest at this point, what would be its final speed vf when it reaches Sasha’s hands down below? (She catches the ball at the same height from which she tossed it.)For your limit check, investigate what happens to vf as Sasha’s launch speed gets very large (i.e., as vi→∞). This is my question. I am also trying to figure out what formulas I would use to solve it.arrow_forwardAn attacker at the base of a castle wall 3.95 m high throws a rock straight up with speed 8.20 m/s from a height of 1.50 m above the ground. (a) Will the rock reach the top of the wall? O Yes O No (b) If so, what is its speed at the top? If not, what initial speed must it have to reach the top? m/s (c) Find the change in speed of a rock thrown straight down from the top of the wall at an initial speed of 8.20 m/s and moving between the same two points. m/s (d) Does the change in speed of the downward-moving rock agree with the magnitude of the speed change of the rock moving upward between the same elevations? O Yes O No (e) Explain physically why it does or does not agree.arrow_forward
- An attacker at the base of a castle wall 3.80 m high throws a rock straight up with speed 8.40 m/s from a height of 1.40 m above the ground. (a) Will the rock reach the top of the wall? Yes, No (b) If so, what is its speed at the top? If not, what initial speed must it have to reach the top? m/s(c) Find the change in speed of a rock thrown straight down from the top of the wall at an initial speed of 8.40 m/s and moving between the same two points. m/s(d) Does the change in speed of the downward-moving rock agree with the magnitude of the speed change of the rock moving upward between the same elevations? Yes, No (e) Explain physically why it does or does not agree.arrow_forwardJames Bond runs then jumps off a building in a horizontal direction at speed v. He tries to reach the roof of a building nearby, at a distance d = 10 m. (a) That building is 10 m shorter than the one where Bond jumps off. If his speed cannot exceed 10 m/s and his initial velocity is purely horizontal, does he have a chance to make it? If yes, what is his minimum requiredspeed? (b) Consider instead what happens if the building he jumps to has the same height as the one he jumps from but this time he jumps with some initial angle q. If his initial speed is 10 m/s, does he have a chance to make it? If yes, for what range of q is this possible?arrow_forwardA skier with a mass of 63.0 kg starts from rest and skis down an icy slope that has a length of 53.0 m at an angle of 32 degrees with respect to the horizontal. At the bottom of the slope, the path levels out and becomes horizontal, the snow becomes less icy, and the skier begins to slow down, coming to rest in a distance of 122m along the horizontal path. What is the speed of the skier at the bottom of the slope? What is the coefficient of kinetic friction between the skier and the horizontal surface?arrow_forward
- When you throw a pebble straight up with initial speed 5.0-m/s, it reaches a maximum height H with no air resistance. At what speed should you throw it straight up so it will go 1.7-times as high? Provide your final answer in m/s.arrow_forwardTwo snowy peaks are at heights H = 800 m and h = 740 m above the valley between them. A ski run extends between the peaks, with a total length of 2.91 km and an average slope of 0 = 32° (see the figure). (a) A skier starts from rest at the top of the higher peak. At what speed will he arrive at the top of the lower peak if he coasts without using ski poles? Ignore friction. (b) Approximately what coefficient of kinetic friction between snow and skis would make him stop just at the top of the lower peak? (a) Number i (b) Number i h 0 Units Units 0 H ←arrow_forwardHenrietta is jogging on the sidewalk at 3.05 m>s on the way to her physics class. Bruce realizes that she forgot her bag of bagels, so he runs to the window, which is 38.0 m above the street level and directly above the sidewalk, to throw the bag to her. He throws it horizontally 9.00 s after she has passed below the window, and she catches it on the run. Ignore air resistance. (a) With what initial speed must Bruce throw the bagels so that Henrietta can catch the bag just before it hits the ground? (b) Where is Henrietta when she catches the bagels?arrow_forward
- answer the following questionarrow_forwardYou are an engineer in charge of designing a new generation of elevators for a prospective upgrade to the Empire State Building. Before the state legislature votes on funding for the project, they would like you to prepare a report on the benefits of upgrading the elevators. One of the numbers that they have requested is the time it will take the elevator to go from the ground floor to the 102nd floor observatory. They are unlikely to approve the project unless the new elevators make the trip much faster than the old elevators. If state law mandates that elevators cannot accelerate more than 23.90 m/s2 or travel faster than 19.3 m/s, what is the minimum time in which an elevator can travel the 373 m from the ground floor to the observatory floor? minimum travel time: ?arrow_forwardA ski jumper starts from rest 47.5 m above the ground on a frictionless track and flies off the track at an angle of 45.0° above the horizontal and at a height of 18.0 m above the ground. Neglect air resistance. (a) What is her speed when she leaves the track? m/s(b) What is the maximum altitude she attains after leaving the track? m(c) Where does she land relative to the end of the track? marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY