
Concept explainers
(a)
The time interval between the flights of the two balls.
(a)

Answer to Problem 74AP
The time interval between the flights of the two balls is
Explanation of Solution
Write the equation for time interval.
Here,
Write the expression from
Here,
Write the expression from kinematics for the second ball.
Here,
Conclusion:
Substitute
Consider only positive solution.
Substitute
Substitute
Thus, the time interval between the flights of the two balls is
(b)
The velocity of the balls when they strike the ground.
(b)

Answer to Problem 74AP
The velocity of the balls when they strike the ground is
Explanation of Solution
Write the equation velocity at which the ball 1 strikes the ground.
Here,
Write the equation velocity at which the ball 2 strikes the ground.
Here,
Conclusion:
Substitute
Substitute
Thus, the velocity of the balls when they strike the ground is
(c)
The distance between the balls.
(c)

Answer to Problem 74AP
The distance between the balls is
Explanation of Solution
Write the equation of the distance between the balls.
Here,
Rewrite the expression for the distance between the balls by using equation (II) and (III).
Conclusion:
Substitute
Thus, the distance between the balls is
Want to see more full solutions like this?
Chapter 2 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- (a) For a spherical capacitor with inner radius a and outer radius b, we have the following for the capacitance. ab C = k₂(b- a) 0.0695 m 0.145 m (8.99 × 10º N · m²/c²)( [0.145 m- 0.0695 m × 10-11 F = PF IIarrow_forwardA pendulum bob A (0.5 kg) is given an initialspeed of vA = 4 m/s when the chord ishorizontal. It then hits a stationary block B (1kg) which then slides to a maximum distanced before it stops. Determine the value of d.The coefficient of static friction between theblock and the plane is μk = 0.2. The coefficientof restitution between A and B is e = 0.8.Ans: d=1.0034 marrow_forwardFigure 29-43 Problem 12. ••13 In Fig. 29-44, point P₁ is at distance R = 13.1 cm on the perpendicular bisector of a straight wire of length L = 18.0 cm carrying current i = 58.2 mA. (Note that the wire is not long.) What is the magnitude of the magnetic field at P₁ due to i? P2° R R Larrow_forward
- Checkpoint 1 The figure shows the current i in a single-loop circuit with a battery B and a resistance R (and wires of neg- ligible resistance). (a) Should the emf arrow at B be drawn pointing leftward or rightward? At points a, B C R b, and c, rank (b) the magnitude of the current, (c) the electric potential, and (d) the electric potential energy of the charge carriers, greatest first.arrow_forwardPls help ASAParrow_forwardPls help asaparrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning





