Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 4OQ
When applying the equations of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The takeoff speed for an Airbus A320 jetliner is 80 m/s. Velocity data measured as the plane approaches takeoff are shown in the table below.
t(s)
vx(m/s)
0
0
10
23
20
46
30
69
(a) What is the plane’s acceleration as it approaches takeoff?
(b) At what time t does the plane leave the ground?
(c) Safety regulations require that the length of the runway must be at least three times the takeoff distance. What is the minimum length runway this aircraft can use?
An object's position in the x-direction as a function of time is given by the expression;
x(t) = 5t2 + 2t where are quantities have proper SI Units. What is the object's average velocity in the x-direction between the times t = 1.3 s and t = 2.28 s.
An object begins to move along the y axis and its position is given by the equation
y = 4t2 − 3t − 2,
with y in meters and t in seconds. (Express your answers in vector form.)
(a) What is the position of the object when it changes its direction?(m)
b) What is the object's velocity when it returns to its original position at
t = 0?(m/s)
Chapter 2 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A jetliner, travelling northward, is landing with a speed of 69 m/ s. Once the jet touches down, it has 750 m of runway in which to reduce its speed to 6.1 m/ s. Compute the average acceleration (magnitude and direction) of the plane during landing.arrow_forwardA skater on Ottawa’s Rideau Canal travels in a straight line 8.5 3 102 m [25° N of E] and then 5.6 3 102 m in a straight line [21° E of N]. The entire motion takes 4.2 min. (a) What is the skater’s displacement? (b) What are the skater’s average speed and average velocity?arrow_forwardWhich of the following statements is incorrect? Acceleration is a rate of change of velocity. Average velocity is the rate at which an object changes its position from one place to another. At constant velocity, the object is moving in a straight line with zero acceleration. At constant velocity, the object is moving in a straight line at a varying speed. The sum of two or more vectors is represented by a resultant vector, .arrow_forward
- A jet plane beginning its takeoff moves down the runway at a constant acceleration of 4.30 m/s2. If a speed of 73.0 m/s is required for the plane to leave the ground (assume it’s taking off from rest), how long a runway is required? Group of answer choices 620 m 98 m 435 m 560 marrow_forwardAn automobile travels on a straight road for 34 km at 36 km/h. It then continues in the same direction for another 34 km at 72 km/h. (a) What is the average velocity of the car during this 68 km trip? (Assume that it moves in the positive × direction.) (b) What is the average speed?arrow_forwardAn Australian emu is running due north in a straight line at a speed of 13.0 m/s and slows down to a speed of 10.2 m/s in 4.80 s. (a) What is the magnitude and direction of the bird’s acceleration? (b) Assuming that the acceleration remains the same, what is the bird’s velocity after an additional 1.40 s has elapsed?arrow_forward
- You watch a player on the OSU football team and observe that he runs for 2.62 km. Is the displacement of the player the same as the distance traveled? If not, why not?arrow_forwardAt an air show, a jet plane has velocity components vx= 695km/h and v y =415km/h at time 4.35 s and v x =938km/h and V y =365km/h at time 7.52s. A)For this time interval, find the xxx component of the plane's average acceleration. b)For this time interval, find the yyy component of the plane's average acceleration. C)For this time interval, find the magnitude of its average acceleration. D)For this time interval, find the direction of its average acceleration.arrow_forwardAt a time t = 0 s, an object is observed at position x = 0 m. Its position along the x axis is described by the expression: x (t) = - 3t + t3, where the units of distance and time are meters and seconds, respectively. How much will the displacement of the object Δx be between t = 1.0 s and t = 3.0 s?arrow_forward
- An object moves along the x axis according to the equation x = 3.85t? 2.00t + 3.00, where x is in meters and t is in seconds. (a) Determine the average speed between t = 2.10 s and t = 4.10 s. 13 The average speed is the distance traveled divided by the time. Is the distance traveled equal to the displacement in this case? m/s (b) Determine the instantaneous speed at t = 2.10 s. m/s Determine the instantaneous speed at t = 4.10 s. m/s (c) Determine the average acceleration between t = 2.10 s and t = 4.10 s. m/s² (d) Determine the instantaneous acceleration at t = 2.10 s. m/s² Determine the instantaneous acceleration at t = 4.10 s. m/s? (e) At what time is the object at rest? Sarrow_forwardUnder which of the following conditions is the magnitude of the average velocity of a particle moving in one dimension smaller than the average speed over some time interval? (a) A particle moves in the +x direction without reversing. (b) A particle moves in the x direction without reversing. (c) A particle moves in the +x direction and then reverses the direction of its motion. (d) There are no conditions for which it is true.arrow_forwardA particle moves along the x axis according to the equation x = 2.00 + 3.00t 1.00t2, where x is in meters and t is in seconds. At t = 3.00 s, find (a) the position of the particle, (b) its velocity, and (c) its acceleration.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY