Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 37P
(a)
To determine
A picture showing the coordinate system for the situation.
(b)
To determine
The model which is the most appropriate to describe the situation.
(c)
To determine
The equation which is most suitable to find the acceleration of the speedboat.
(c)
To determine
The equation which is most suitable to find the acceleration of the speedboat.
(d)
To determine
To solve the equation of section (c) to get the expression for acceleration.
(e)
To determine
The acceleration of the speedboat.
(f)
To determine
The time interval.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
please only answer parts c,d,e,f
An object moves in one dimensional motion with constant acceleration a = 4.5 m/s².
At time t = 0 s, the object is at xo = 2.9 m and has an initial velocity of vo = 4 m/s.
How far will the object move before it achieves a velocity of v = 7 m/s?
Your answer should be accurate to the nearest 0.1 m.
(a) What are the coordinates of the initial position of the stone?
x0
=
m
y0
=
m
(b) What are the components of the initial velocity?
v0x
=
m/s
v0y
=
m/s
(c) Write the equations for the x- and y-components of the velocity of the stone with time. (Use the following as necessary: t. Let the variable t be measured in seconds. Do not include units in your answer.)
vx
=
vy
=
Chapter 2 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A hot air balloon is moving vertically upwards at a constant rate of 9.0 m/s. As the balloon rises, a package is dropped from the balloon and it takes 5 s to hit the ground. How far did the package fall? Make sure to include a diagram of the physical situation, label known and unknown quantities with units, and coordinate system. Thanks!arrow_forwardHow do I solve part b?arrow_forwardA rock is thrown over a cliff from the origin. What is the magnitude of its displacement 2.0 seconds later if the initial velocity is m Vo = 3.2 +2.4 m S Enter your answer in meters. Please Note: Remember to write out your work as you solve this problem. You will be asked to upload your work in the next step. You can type out the steps you took, or you can write them out by hand and upload an image of your handwritten work.arrow_forward
- A certain physics problem about projectile motion has several parts, as listed in the questions below. For each, write out what variables (y, vy, ay, t, x, vx, etc) need to be solved for in each part, and at what event or condition, also expressed using symbols and/or known values. For example: “Find ______ (variable) when _______ (variable) equals ________.” How long until the projectile hits the ground? How far has the projectile travelled horizontally, when it hits the ground? What is the projectile’s speed the moment before ithits the ground? What is the projectile’s direction (angle) of flight, just before hitting the ground? How long until the projectile reaches its maximum altitude? What is that maximum altitude? How long until the projectile reaches a wall/building standing 100 m away (horizontally)?arrow_forwardAn object is moving with an initial velocity of 5.8 i m/s and a final velocity 13.8 i m/s. The time taken for acceleration is 2.2 seconds. Calculate the acceleration in m/s2 to 2 sf. In your answer, you do not enter the i unit vector, but you do need to enter negative signs, if appropriate. e.g. if your answer is a = -5.4 i m/s,2 you would enter -5.4arrow_forwardPlease answer this, I need help.arrow_forward
- The velocity of a particle is given by v = 23t2 - 110t + 52, where v is in meters per second and t is in seconds. Plot the velocity v and acceleration a versus time for the first 6.4 seconds of motion and evaluate the velocity when a is zero. Make the plots and then answer the questions. Questions: When t = 0.8 s, V = i m/s, a = i m/s2 When t = 3.7 s, V = i m/s, a = i m/s? When t = 4.7 s, V = i m/s, a = i m/s? When a = 0, V = m/sarrow_forwardB (3,3) E (5,0) A (0,0) C (7,3) D (7,-6) Note: all coordinates in meters - not to scale! A robot has been designed and is tested on the course above (A-B-C-D-E). If the robot takes 3.4 minutes to complete the course, what is the robot's average speed? Answer: Om/s Xarrow_forwardWhile entering a freeway, a car accelerates from rest at a rate of 2.40 m/s^2 for 12.0 s. (a) Draw a sketch of the situation. (b) List the knowns in this problem. (c) How far does the car travel in those 12.0 s? To solve this part, first identify the unknown, and then discuss how you chose the appropriate equation to solve for it. After choosing the equation, show your steps in solving for the unknown, check your units, and discuss whether the answer is reasonable. (d) What is the car’s final velocity? Solve for this unknown in the same manner as in part (c), showing all steps explicitly.arrow_forward
- A hot air balloon is moving vertically upwards at a constant rate of 9.0 m/s. As the balloon rises, a package is dropped from the balloon and it takes 5 s to hit the ground. How far did the package fall? Make sure to include a diagram of the physical situation, label know and unknown quantities with units, coordinate system. Please use grade 12 kinematics and label the variables as v1, v2, a (Acceleration), t (time), d (displacement) Thanks!arrow_forwardThe acceleration of a particle is a constant. At t = 0 the velocity of the particle is (15.8î + 18.4ĵ) m/s.At = 3.6 s the velocity is 10.5ĵ m/s. (Use the following as necessary: t. Do not include units in your answers.) (b) How do the position (in m) and velocity (in m/s) vary with time? Assume the particle is initially at the origin.arrow_forwardProblem 1: The skiers leaves the ramp A at an angle of 20° with the horizontal. The ramp A is 10 ft above the snow. The skier needs to reach a distance of 300 ft to break is record. 1. Write the 6 equations of motion: acceleration, velocity and position on x and y during the free jump of the skier. 2. Find 2 equations to solve for VA and t. 3. Find the x and y components of velocity of the skier at B. 4. Find the Magnitude and angle of the velocity of the skier at B.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY