Physics for Scientists and Engineers With Modern Physics
9th Edition
ISBN: 9781133953982
Author: SERWAY, Raymond A./
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 44P
(a)
To determine
The time taken by the player to catch his opponent.
(a)
To determine
The distance travelled by player to catch the opponent.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A hockey player is standing on his skates on a frozen pond when an opposing player, moving with a uniform speed of 2.0 m/s, skates by with the puck. After 2.00 s, the first player makes up his mind to chase his opponent. If he accelerates uniformly at 0.44 m/S?, howlong does it take him to catch his opponent?
(a) How long does it take him to catch his opponent?(Assume the player with the puck remains in motion at constant speed.)(b) How far has he traveled in that time?
A hockey player is standing on his skates on a frozen pond when an opposing player, moving with a uniform speed of 12.6 m/s,
skates by with the puck. After 3.4 s, the first player makes up his mind to chase his opponent. If he accelerates uniformly at 4.2 m/s?,
how long does it take him to catch his opponent?
You are arguing over a cell phone while trailing an unmarked police car by 25 m; both your car and the police car are traveling at 110 km/h. Your argument diverts your attention from the police car for 2.0 s (long enough for you to look at the phone and yell, “I won’t do that!”). At the beginning of that 2.0 s, the police officer begins braking suddenly at 5.0 m/s2. (a) What is the separation between the two cars when your attention finally returns? Suppose that you take another 0.40 s to realize your danger and begin braking. (b) If you too brake at 5.0 m/s2, what is your speed when you hit the police car?
Chapter 2 Solutions
Physics for Scientists and Engineers With Modern Physics
Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.4 - Make a velocitytime graph for the car in Figure...Ch. 2.4 - If a car is traveling eastward and slowing down,...Ch. 2.5 - Which one of the following statements is true? (a)...Ch. 2.6 - In Figure 2.12, match each vxt graph on the top...Ch. 2.7 - Consider the following choices: (a) increases, (b)...Ch. 2 - Prob. 1OQCh. 2 - A racing car starts from rest at t = 0 and reaches...Ch. 2 - Prob. 3OQ
Ch. 2 - When applying the equations of kinematics for an...Ch. 2 - Prob. 5OQCh. 2 - Prob. 6OQCh. 2 - When the pilot reverses the propeller in a boat...Ch. 2 - Prob. 8OQCh. 2 - A skateboarder starts from rest and moves down a...Ch. 2 - Prob. 10OQCh. 2 - Prob. 11OQCh. 2 - A pebble is dropped from rest from the top of a...Ch. 2 - A student at the top of a building of height h...Ch. 2 - You drop a ball from a window located on an upper...Ch. 2 - A pebble is released from rest at a certain height...Ch. 2 - A ball is thrown straight up in the air. For which...Ch. 2 - Prob. 17OQCh. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - If the average velocity of an object is zero in...Ch. 2 - Prob. 2CQCh. 2 - If a car is traveling eastward, can its...Ch. 2 - Prob. 4CQCh. 2 - Prob. 5CQCh. 2 - You throw a ball vertically upward so that it...Ch. 2 - (a) Can the equations of kinematics (Eqs....Ch. 2 - (a) Can the velocity of an object at an instant of...Ch. 2 - Two cars are moving in the same direction in...Ch. 2 - Position, Velocity, and Speed The position versus...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A person walks first at a constant speed of 5.00...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - Prob. 6PCh. 2 - A positiontime graph for a particle moving along...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - Find the instantaneous velocity of the particle...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - An object moves along the x axis according to the...Ch. 2 - Prob. 21PCh. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - Prob. 24PCh. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - Prob. 26PCh. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - A truck covers 40.0 m in 8.50 s while smoothly...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - Prob. 31PCh. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - Prob. 33PCh. 2 - Why is the following situation impossible?...Ch. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - A glider of length moves through a stationary...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - Prob. 41PCh. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - The speed of a bullet as it travels down the...Ch. 2 - Prob. 60APCh. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - Prob. 62APCh. 2 - Prob. 63APCh. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - Prob. 65APCh. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - An elevator moves downward in a tall building at a...Ch. 2 - Prob. 68APCh. 2 - Prob. 69APCh. 2 - Prob. 70APCh. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 72APCh. 2 - Prob. 73APCh. 2 - Prob. 74APCh. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 76APCh. 2 - Prob. 77APCh. 2 - Prob. 78APCh. 2 - Prob. 79APCh. 2 - Prob. 80APCh. 2 - Prob. 81CPCh. 2 - Prob. 82CPCh. 2 - In a womens 100-m race, accelerating uniformly,...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A soccer player is standing on the midfield when an opposing player, moving with a uniform speed of 5 m/s, runs by with the ball in a straight line. After 1.5 s, the first player makes up his mind to chase his opponent. The first player accelerates uniformly at 1.2 m/s2. (a) Draw a diagram of the problem. (a) How long does it take him to catch his opponent? (b) How far has he traveled in that time? (Assume the player with the ball remains in motion at constant speed.) (c) What is the final speed of the first player?arrow_forwardA soccer player is standing on the midfield when an opposing player, moving with a uniform speed of 5 m/s, runs by with the ball in a straight line. After 1.5 s, the first player makes up his mind to chase his opponent. The first player accelerates uniformly at 1.2 m/s2. (a) Draw a diagram of the problem. (a) How long does it take him to catch his opponent? (b) How far has he traveled in that time? (Assume the player with the ball remains in motion at a constant speed. (c) What is the final speed of the first player? (5 points)arrow_forwardHi, I am doing problem number 2 from the end of the chapter questions in my textbook. The problem reads as such: "An 18-year-old runner can complete a 10.0-km course with an average speed of 4.39 m/s. A 50-year-old runner can cover the same distance with an average speed of 4.27 m/s. How much later (in seconds) should the younger runner start in order to finish the course at the same time as the older runner?" I am looking at the solution for the problem and I did everything right except the last step. The solution says to subtract the time found for the 18 year old to run 10km from the time found for the 50 year old to run 10km. However, I divided the anwers I found. Why are we subtracting the answers from one another and not dividing them? Thank you!arrow_forward
- I need help on this.arrow_forwardA boy stands daydreaming as his friend runs by at the constant speed of 3.68 m/s. After 1.39 s, the boy decides to chase his friend and accelerates uniformly at 2.44 m/s². Assuming motion along a straight line, how far x does the boy travel before he catches his friend?arrow_forwardAs a science project, you drop a watermelon off the top of the Empire State Building, 320m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a speed of 33.0 m/s How fast is the watermelon going when it passes Superman?arrow_forward
- A police car gets passed by a car traveling at a constant speed of 150.0 km/hr. The police car accelerates from rest at 5.00 m/s2, the moment the two cars are side by side. How long does it take the police officer to catch the car?arrow_forwardA cat is sleeping on the floor in the middle of a 3.0 m wide room when a barking dog enters with a speed of 1.50 m/s. As the dog enters, the cat immediately accelerates at 0.85 m/s2 toward an open window on the opposite side of the room. The dog is a bit startled by the cat and begins to slow down at 0.10 m/s2 as soon as it enters the room. How far is the cat in front of the dog as it leaps through the window?arrow_forward1. A hockey player is standing on his skates on a frozen pond when an opposing player, moving with a uniform speed of 12.0 m/s, skates by with the puck. After 3.00 s, the first player makes up his mind to chase his opponent. If he accelerates uniformly at 4.00 m/s, (a) how long does it take him to catch his opponent and (b) how far has he traveled in that time 1. A stone is thrown from the top of a cliff with a velocity of 2.5 m/s and hits the ground 5.5 s later. How high is the cliff? 3. A jogger runs 7.3 km [W], then 4.8 km [S], and finally 2.9 km [E]. The entire trip takes 2.0 h to complete. Calculate the jogger's (a) (b) the total displacement average velocity 4. A plane leaves Toronto and flies with an airspeed of 685 km/h always pointing due East. A wind is blowing from the North at 68 km/h. (a) (b) What is the plane's velocity relative to the ground? What is the plane's displacement from Toronto after flying for 2.5 h? 5. A car is travelling at 26 m/s when it pulls out to pass a…arrow_forward
- A driver of a car slams on the brakes when he sees a tree blocking the road. The car slows uniformly with an acceleration of 5.60 m/s2 for 4 seconds, making straight skid marks 62.4 m long, all the way to the tree. With what speed does the car then strike the tree?arrow_forwardA skateboarder starts from rest atop a slope that is 20.0 m long and accelerates uniformly 2.60 m/s per second down the slope. (a) What is the position of the skateboarder 3.00 s later? (b) What is the speed at that point? (c) How much time overall is needed to go down the slope?arrow_forwardAs a science project, you drop a watermelon off the top of the Empire State Building, 320 m above the sidewalk. It so happens that Superman flies by at the instant you release the watermelon. Superman is headed straight down with a speed of 37.0 m/sm/s.How fast is the watermelon going when it passes Superman?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY