
University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 2, Problem 35P
A person hits a tennis ball with a mass of 0.058 kg against a wall. The average component of the ball's velocity perpendicular to the wall is 11 m/s, and the ball hits the wall every 2.1 s on average, rebounding with the opposite perpendicular velocity component. (a) What is the average force exerted on the wall? (b) If the part of the wall the person hits has an area of 3.0 m2, what is the average pressure on that area?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
An electric power station that operates at 30 KV and uses
a 15:1 set step-up ideal transformer is producing 400MW
(Mega-Watt) of power that is to be sent to a big city
with only 2.0% loss. What
which is located 270 km
away
is the resistance of the Two wires that are
being used?
52
Slink, from Toy Story, is a slinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed (as shown in figure A) with no initial velocity and reaches the floor right as his velocity hits zero again (as shown in figure C).
The character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?
Chapter 2 Solutions
University Physics Volume 2
Ch. 2 - Check Your Understanding The recommended daily...Ch. 2 - Check Understanding The density of in a Classroom...Ch. 2 - Check Your Understanding Liquids and solids have...Ch. 2 - Check Your Understanding If you consider a very...Ch. 2 - Check Your Understanding Which has a longer mean...Ch. 2 - Check Your Understanding Suppose 2 moles of helium...Ch. 2 - Two H2 molecules can react with one O2 molecule to...Ch. 2 - Under what circumstances would you expect a gas to...Ch. 2 - A constant-volume gas thermometer contains a fixed...Ch. 2 - Inflate a balloon at room temperature. Leave the...
Ch. 2 - In the last chapter, free convection was explained...Ch. 2 - How is momentum related to the pressure exerted by...Ch. 2 - If one kind of molecule has double the radius of...Ch. 2 - What is the average velocity of the air molecules...Ch. 2 - Why do the atmospheres of Jupiter, Saturn, Uranus,...Ch. 2 - Statistical mechanics says that in a gas...Ch. 2 - Which is more dangerous, a closet where tanks of...Ch. 2 - Experimentally it appears that many polyatomic...Ch. 2 - One might think that the internal energy of...Ch. 2 - You mix 5 moles of H2 at 300 K with 5 moles of He...Ch. 2 - One cylinder contains helium gas and another...Ch. 2 - Repeat the previous question if one gas is still...Ch. 2 - An ideal gas is at a temperature of 300 K. To...Ch. 2 - The gauge pressure in your car tires is...Ch. 2 - Suppose a gas-filled incandescent light bulb is...Ch. 2 - People buying food in sealed bags at high...Ch. 2 - How many moles are there in (a) 0.0500 g of N2 gas...Ch. 2 - A cubic container of volume 2.00 L holds 0.500 mol...Ch. 2 - Calculate the number of moles in the 2.00-L volume...Ch. 2 - An airplane passenger has 100 cm3 of air in his...Ch. 2 - A company advertises that it delivers helium at a...Ch. 2 - According to...Ch. 2 - An expensive vacuum system can achieve a pressure...Ch. 2 - The number density N/V of gas molecules at a...Ch. 2 - A bicycle tire contains 2.00 L of gas at an...Ch. 2 - In a common demonstration, a bottle is heated and...Ch. 2 - A high-pressure gas cylinder contains 50.0 L of...Ch. 2 - Find the number of moles in 2.00 L of gas at 35.0 ...Ch. 2 - Calculate the depth to which Avogadro's number of...Ch. 2 - (a) What is the gauge pressure in a 25.0 cc car...Ch. 2 - A person hits a tennis ball with a mass of 0.058...Ch. 2 - A person is in a closed room (a racquetball court)...Ch. 2 - Five bicyclists are riding at the following...Ch. 2 - Some incandescent light bulbs are filled with...Ch. 2 - Typical molecular speeds (vrms) are large, even at...Ch. 2 - What is the average kinetic energy in joules of...Ch. 2 - What is the ratio of the average translational...Ch. 2 - What is the total translational kinetic energy of...Ch. 2 - The product of the pressure and volume of a sample...Ch. 2 - What is the gauge pressure inside a tank of...Ch. 2 - If the rms speed of oxygen molecules inside a...Ch. 2 - The escape velocity of any object from Earth is...Ch. 2 - The escape velocity from the Moon is much smaller...Ch. 2 - Nuclear fusion, the energy solute of Sun, hydrogen...Ch. 2 - Suppose that the typical speed (vrms) of carbon...Ch. 2 - (a) Hydrogen molecules (molar mass is equal to...Ch. 2 - There are two important isotopes of uranium, U235...Ch. 2 - The partial pressure of carbon dioxide in the...Ch. 2 - Dry air consists of approximately 78% nitrogen,...Ch. 2 - (a) Using data from the previous problem, find the...Ch. 2 - (a) Given that air is 21% oxygen, find the minimum...Ch. 2 - (a) If the partial pressure of water vapor is 8.05...Ch. 2 - To give a helium atom nonzero angular momentum...Ch. 2 - (a) How much heat must be added to raise the...Ch. 2 - A sealed, rigid container of 0.560 mol of an...Ch. 2 - A sample of neon gas (Ne, molar mass M=20.2 g/mol)...Ch. 2 - A steel container of mass 135 g contains 24.0 g of...Ch. 2 - A sealed room has a volume of 24 m3. It's filled...Ch. 2 - Heliox, a mixture of helium and oxygen, is...Ch. 2 - Professional divas sometimes use heliox,...Ch. 2 - In car racing, one advantage of mixing liquid...Ch. 2 - In a sample of hydrogen sulfide ( M=34.1 g/mol) at...Ch. 2 - Using the approximation v1v1+v f(v)dvf(v1)v for...Ch. 2 - Using the method of the preceding problem,...Ch. 2 - By counting squares in the following figure,...Ch. 2 - Using a numerical integration method such as...Ch. 2 - Find (a) the most probable speed, (b) the average...Ch. 2 - Repeat the preceding problem for nitrogen...Ch. 2 - At what temperature is the average speed of carbon...Ch. 2 - The most probable speed for molecules of a gas at...Ch. 2 - a) At what temperature do oxygen molecules have...Ch. 2 - In the deep space between galaxies, the density of...Ch. 2 - (a) Find the density in SI units of air at a...Ch. 2 - The air inside a hot-air balloon has a temperature...Ch. 2 - When an air bubble rises from the bottom to the...Ch. 2 - (a) Use the ideal gas equation to estimate the...Ch. 2 - One process for decaffeinating coffee uses carbon...Ch. 2 - On a winter day when the air temperature is 0 ,...Ch. 2 - On a warm day when the air temperature is 30 , a...Ch. 2 - (a) People often think of humid air as "heavy."...Ch. 2 - The mean flee path for helium at a certain...Ch. 2 - The mean free path for methane at a temperature of...Ch. 2 - In the chapter on fluid mechanics, Bernoulli's...Ch. 2 - Find the total number of collisions between...Ch. 2 - (a) Estimate the specific heat capacity of sodium...Ch. 2 - A sealed, perfectly insulated container contains...Ch. 2 - Find the ratio f(vp)/f(vrms) for hydrogen gas (...Ch. 2 - Unreasonable results. (a) Find the temperature of...Ch. 2 - Unreasonable results. (a) Find the sped of...Ch. 2 - An airtight dispenser for drinking water is 25 cm...Ch. 2 - Eight bumper cars, each with a mass of 322 kg. are...Ch. 2 - Verify that vp=2kBTm.`Ch. 2 - Verify the normalization equation 0f(v)dv=1 In...Ch. 2 - Verify that v=8kBTm. Make the same scaling...Ch. 2 - Verify that vrms=v2=3kBTm.`
Additional Science Textbook Solutions
Find more solutions based on key concepts
1.14 Classify each of the following as a pure substance or a mixture. If a mixture, indicate whether it is homo...
Chemistry: The Central Science (14th Edition)
A mixed culture of Escherichia coli and Penicillium chrysogenum is inoculated onto the following culture media....
Microbiology: An Introduction
Give at least three examples of key ecosystem services that nature provides for people.
Campbell Biology (11th Edition)
Which one of the following is not a fuel produced by microorganisms? a. algal oil b. ethanol c. hydrogen d. met...
Microbiology: An Introduction
a. Draw the mechanism for the following reaction if it a involves specific-base catalysis. b. Draw the mechanis...
Organic Chemistry (8th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the energy needed to melt 50 g of 0°C icearrow_forwardTwo very long line charges are set up along lines that areparallel to the z-axis, so they set up Electric fields strictly in the xy plane. One goes throughthe x-axis at x = −0.40 m and has charge a density λ1 = +12.0 μC/m, the other goesthrough the x-axis at x = +0.40 m has charge density λ2 = −8.0 μC/m.A. Find the Electric field at point A: (0.40, 0.80) (distances in meters). Give answersin unit vector notation and draw a graph of the x-y plane with the E-fields you justfound.B. Find a point on the x-axis at which the total E-field is 0.arrow_forwardIn order to increase the amount of exercise in her daily routine, Tara decides to walk up the four flights of stairs to her car instead of taking the elevator. Each of the steps she takes are 18.0 cm high, and there are 12 steps per flight. (a) If Tara has a mass of 77.0 kg, what is the change in the gravitational potential energy of the Tara-Earth system (in J) when she reaches her car? ] (b) If the human body burns 1.5 Calories (6.28 x 10³ J) for each ten steps climbed, how much energy (in J) has Tara burned during her climb? ] (c) How does the energy she burned compare to the change in the gravitational potential energy of the system? Eburned Δυarrow_forward
- A 4.40 kg steel ball is dropped onto a copper plate from a height of 10.0 m. If the ball leaves a dent 2.75 mm deep, what is the average force exerted by the plate on the ball during the impact? Narrow_forwardA block of mass m = 7.00 kg is released from rest from point and slides on the frictionless track shown in the figure below. (Assume h₂ = 7.80 m.) a m ha 3.20 m 2.00 m i (a) Determine the block's speed at points ® and point B ©. m/s m/s point (b) Determine the net work done by the gravitational force on the block as it moves from point J A to pointarrow_forwardA 1.10 x 10²-g particle is released from rest at point A on the inside of a smooth hemispherical bowl of radius R R B 2R/3 (a) Calculate its gravitational potential energy at A relative to B. ] (b) Calculate its kinetic energy at B. ] (c) Calculate its speed at B. m/s (d) Calculate its potential energy at C relative to B. J (e) Calculate its kinetic energy at C. ] = 26.5 cm (figure below).arrow_forward
- Report on the percentage errors (with uncertainty) between the value of 'k' from the F vs displacement plot and each of the values of 'k' from the period measurements. Please comment on the goodness of the results. Value of k = Spring constant k = 50.00 N/m Each of the values of k from period measurements: Six Measurements of time for 5 osccilations: t1 = 7.76s, t2=8.00s, t3=7.40s, t4=7.00s, t5=6.90s, t6=7.10s (t1-tavg)^2 = (7.76-7.36)^2 = 0.16%(t2-tavg)^2 =(8.00-7.36)^2 = 0.4096%(t3-tavg)^2 =(7.40-7.36)^2 = 0.0016%(t4-tavg)^2 =(7.00-7.36)^2 = 0.1296%(t5-tavg)^2 =(6.90-7.36)^2 = 0.2116%(t6-tavg)^2 =(7.10-7.36)^2 = 0.0676arrow_forwardNo chatgpt pls will upvotearrow_forwardBased on the two periods (from hand timed and ultrasonic sensor), find the value of 'k' they suggest from the physics and from the value of the hanging mass. hand time period is 1.472s and ultrasonic sensor time period is 1.44sarrow_forward
- No chatgpt pls will upvotearrow_forwardExperimental Research Report Template Title: Paper Airplane Flight. Materials: Paper, ruler, tape Procedure: Fold paper into different airplane designs, such as dart, glider, or classic. Measure and record the distances each design flies when thrown with the same force. Discuss aerodynamics and the factors that affect flight distance. Introduction: (What do you expect to learn? What is the purpose of this lab? List any questions this experiment will answer.) Hypothesis: (Predict the outcome(s) of the experiment, must be in an “if…then format.) Materials: (What equipment and materials did you need for this experiment assignment? Describe how any equipment was connected. Also mention any special hardware or connections. List the name and amount of each item used.) Procedures: (What steps did you take to accomplish this lab assignment? Include Safety Precautions.) Data Collection: (Record the data that is required at each step of the…arrow_forwardTitle: Studying the Relationship Between Drop Height and Bouncing Height of a Ball: You can drop balls of different materials (e.g., rubber, plastic, ping pong) from various heights onto a flat surface and measure the height of their bounce using a ruler. Introduction: (What do you expect to learn? What is the purpose of this lab? List any questions this experiment will answer.) Hypothesis: (Predict the outcome(s) of the experiment, must be in an “if…then format.) Materials: (What equipment and materials did you need for this experiment assignment? Describe how any equipment was connected. Also mention any special hardware or connections. List the name and amount of each item used.) Procedures: (What steps did you take to accomplish this lab assignment? Include Safety Precautions.) Data Collection: (Record the data that is required at each step of the lab: tables, charts, graphs, sketches, etc.) Data Analysis: (Explain you…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY