In car racing, one advantage of mixing liquid nitrous oxide (N 2 O) with air is that the boiling of the "nitrous" absorbs latent heat of vaporization and thus cools the air and ultimately the fuel-air mixture, allowing more fuel-air mixture to go into each cylinder. As a very rough look at this process, suppose 1.0 mol of nitrous oxide gas at its boiling point, − 88 ℃, is mixed with 4.0 mol of air (assumed diatomic) at 30 ℃. What is the final temperature of the mixture? Use the measured heat capacity of N 2 O at 25 ℃, which is 30.4J/mol ℃. (The primary advantage of nitrous oxide is that it consists of 1/3 oxygen, which is more than air contains, so it supplies more oxygen >to bum the fuel. Another advantage is that its decomposition into nitrogen and oxygen releases energy in the cylinder.)
In car racing, one advantage of mixing liquid nitrous oxide (N 2 O) with air is that the boiling of the "nitrous" absorbs latent heat of vaporization and thus cools the air and ultimately the fuel-air mixture, allowing more fuel-air mixture to go into each cylinder. As a very rough look at this process, suppose 1.0 mol of nitrous oxide gas at its boiling point, − 88 ℃, is mixed with 4.0 mol of air (assumed diatomic) at 30 ℃. What is the final temperature of the mixture? Use the measured heat capacity of N 2 O at 25 ℃, which is 30.4J/mol ℃. (The primary advantage of nitrous oxide is that it consists of 1/3 oxygen, which is more than air contains, so it supplies more oxygen >to bum the fuel. Another advantage is that its decomposition into nitrogen and oxygen releases energy in the cylinder.)
In car racing, one advantage of mixing liquid nitrous oxide (N2O) with air is that the boiling of the "nitrous" absorbs latent heat of vaporization and thus cools the air and ultimately the fuel-air mixture, allowing more fuel-air mixture to go into each cylinder. As a very rough look at this process, suppose 1.0 mol of nitrous oxide gas at its boiling point,
−
88 ℃, is mixed with 4.0 mol of air (assumed diatomic) at 30 ℃. What is the final temperature of the mixture? Use the measured heat capacity of N2O at 25 ℃, which is 30.4J/mol ℃. (The primary advantage of nitrous oxide is that it consists of 1/3 oxygen, which is more than air contains, so it supplies more oxygen >to bum the fuel. Another advantage is that its decomposition into nitrogen and oxygen releases energy in the cylinder.)
How can you tell which vowel is being produced here ( “ee,” “ah,” or “oo”)? Also, how would you be able to tell for the other vowels?
You want to fabricate a soft microfluidic chip like the one below. How would you go about
fabricating this chip knowing that you are targeting a channel with a square cross-sectional
profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the
process to form the inlet and outlet.
Square Cross Section
1. What are the key steps involved in the fabrication of a semiconductor device.
2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer
with the pattern below. Describe the process you would use.
High Aspect
Ratio
Trenches
Undoped Si Wafer
P-doped Si
3. You would like to deposit material within a high aspect ratio trench. What approach would you
use and why?
4. A person is setting up a small clean room space to carry out an outreach activity to educate high
school students about patterning using photolithography. They obtained a positive photoresist, a
used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask
with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full
resist gets developed, and they are unable to transfer the pattern onto the resist. Help them
troubleshoot and find out why pattern of transfer has not been successful.
5. You are given a composite…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.