University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 52P
The partial pressure of carbon dioxide in the lungs is about 470 Pa when the total pressure in the lungs is 1.0 atm. What percentage of the air molecules in the lungs is carbon dioxide? Compare your result to the percentage of carbon dioxide in the atmosphere, but 0.033%.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The drawing shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has
an area of 1.90 m², while surface (2) has an area of 3.90 m². The electric field in the drawing is uniform and has a
magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle 8 made
between the electric field with surface (2) is 30.0°.
Solve in Nm²/C
1
Ө
Surface 2
Surface 1
PROBLEM 5
What is the magnitude and direction of the resultant
force acting on the connection support shown here?
F₁ = 700 lbs
F2 = 250 lbs
70°
60°
F3 = 700 lbs
45°
F4 = 300 lbs
40°
Fs = 800 lbs
18°
Free Body Diagram
F₁ = 700 lbs
70°
250 lbs
60°
F3=
= 700 lbs
45°
F₁ = 300 lbs
40°
=
Fs 800 lbs
18°
PROBLEM 3
Cables A and B are Supporting a 185-lb wooden crate.
What is the magnitude of the tension force in each
cable?
A
20°
35°
185 lbs
Chapter 2 Solutions
University Physics Volume 2
Ch. 2 - Check Your Understanding The recommended daily...Ch. 2 - Check Understanding The density of in a Classroom...Ch. 2 - Check Your Understanding Liquids and solids have...Ch. 2 - Check Your Understanding If you consider a very...Ch. 2 - Check Your Understanding Which has a longer mean...Ch. 2 - Check Your Understanding Suppose 2 moles of helium...Ch. 2 - Two H2 molecules can react with one O2 molecule to...Ch. 2 - Under what circumstances would you expect a gas to...Ch. 2 - A constant-volume gas thermometer contains a fixed...Ch. 2 - Inflate a balloon at room temperature. Leave the...
Ch. 2 - In the last chapter, free convection was explained...Ch. 2 - How is momentum related to the pressure exerted by...Ch. 2 - If one kind of molecule has double the radius of...Ch. 2 - What is the average velocity of the air molecules...Ch. 2 - Why do the atmospheres of Jupiter, Saturn, Uranus,...Ch. 2 - Statistical mechanics says that in a gas...Ch. 2 - Which is more dangerous, a closet where tanks of...Ch. 2 - Experimentally it appears that many polyatomic...Ch. 2 - One might think that the internal energy of...Ch. 2 - You mix 5 moles of H2 at 300 K with 5 moles of He...Ch. 2 - One cylinder contains helium gas and another...Ch. 2 - Repeat the previous question if one gas is still...Ch. 2 - An ideal gas is at a temperature of 300 K. To...Ch. 2 - The gauge pressure in your car tires is...Ch. 2 - Suppose a gas-filled incandescent light bulb is...Ch. 2 - People buying food in sealed bags at high...Ch. 2 - How many moles are there in (a) 0.0500 g of N2 gas...Ch. 2 - A cubic container of volume 2.00 L holds 0.500 mol...Ch. 2 - Calculate the number of moles in the 2.00-L volume...Ch. 2 - An airplane passenger has 100 cm3 of air in his...Ch. 2 - A company advertises that it delivers helium at a...Ch. 2 - According to...Ch. 2 - An expensive vacuum system can achieve a pressure...Ch. 2 - The number density N/V of gas molecules at a...Ch. 2 - A bicycle tire contains 2.00 L of gas at an...Ch. 2 - In a common demonstration, a bottle is heated and...Ch. 2 - A high-pressure gas cylinder contains 50.0 L of...Ch. 2 - Find the number of moles in 2.00 L of gas at 35.0 ...Ch. 2 - Calculate the depth to which Avogadro's number of...Ch. 2 - (a) What is the gauge pressure in a 25.0 cc car...Ch. 2 - A person hits a tennis ball with a mass of 0.058...Ch. 2 - A person is in a closed room (a racquetball court)...Ch. 2 - Five bicyclists are riding at the following...Ch. 2 - Some incandescent light bulbs are filled with...Ch. 2 - Typical molecular speeds (vrms) are large, even at...Ch. 2 - What is the average kinetic energy in joules of...Ch. 2 - What is the ratio of the average translational...Ch. 2 - What is the total translational kinetic energy of...Ch. 2 - The product of the pressure and volume of a sample...Ch. 2 - What is the gauge pressure inside a tank of...Ch. 2 - If the rms speed of oxygen molecules inside a...Ch. 2 - The escape velocity of any object from Earth is...Ch. 2 - The escape velocity from the Moon is much smaller...Ch. 2 - Nuclear fusion, the energy solute of Sun, hydrogen...Ch. 2 - Suppose that the typical speed (vrms) of carbon...Ch. 2 - (a) Hydrogen molecules (molar mass is equal to...Ch. 2 - There are two important isotopes of uranium, U235...Ch. 2 - The partial pressure of carbon dioxide in the...Ch. 2 - Dry air consists of approximately 78% nitrogen,...Ch. 2 - (a) Using data from the previous problem, find the...Ch. 2 - (a) Given that air is 21% oxygen, find the minimum...Ch. 2 - (a) If the partial pressure of water vapor is 8.05...Ch. 2 - To give a helium atom nonzero angular momentum...Ch. 2 - (a) How much heat must be added to raise the...Ch. 2 - A sealed, rigid container of 0.560 mol of an...Ch. 2 - A sample of neon gas (Ne, molar mass M=20.2 g/mol)...Ch. 2 - A steel container of mass 135 g contains 24.0 g of...Ch. 2 - A sealed room has a volume of 24 m3. It's filled...Ch. 2 - Heliox, a mixture of helium and oxygen, is...Ch. 2 - Professional divas sometimes use heliox,...Ch. 2 - In car racing, one advantage of mixing liquid...Ch. 2 - In a sample of hydrogen sulfide ( M=34.1 g/mol) at...Ch. 2 - Using the approximation v1v1+v f(v)dvf(v1)v for...Ch. 2 - Using the method of the preceding problem,...Ch. 2 - By counting squares in the following figure,...Ch. 2 - Using a numerical integration method such as...Ch. 2 - Find (a) the most probable speed, (b) the average...Ch. 2 - Repeat the preceding problem for nitrogen...Ch. 2 - At what temperature is the average speed of carbon...Ch. 2 - The most probable speed for molecules of a gas at...Ch. 2 - a) At what temperature do oxygen molecules have...Ch. 2 - In the deep space between galaxies, the density of...Ch. 2 - (a) Find the density in SI units of air at a...Ch. 2 - The air inside a hot-air balloon has a temperature...Ch. 2 - When an air bubble rises from the bottom to the...Ch. 2 - (a) Use the ideal gas equation to estimate the...Ch. 2 - One process for decaffeinating coffee uses carbon...Ch. 2 - On a winter day when the air temperature is 0 ,...Ch. 2 - On a warm day when the air temperature is 30 , a...Ch. 2 - (a) People often think of humid air as "heavy."...Ch. 2 - The mean flee path for helium at a certain...Ch. 2 - The mean free path for methane at a temperature of...Ch. 2 - In the chapter on fluid mechanics, Bernoulli's...Ch. 2 - Find the total number of collisions between...Ch. 2 - (a) Estimate the specific heat capacity of sodium...Ch. 2 - A sealed, perfectly insulated container contains...Ch. 2 - Find the ratio f(vp)/f(vrms) for hydrogen gas (...Ch. 2 - Unreasonable results. (a) Find the temperature of...Ch. 2 - Unreasonable results. (a) Find the sped of...Ch. 2 - An airtight dispenser for drinking water is 25 cm...Ch. 2 - Eight bumper cars, each with a mass of 322 kg. are...Ch. 2 - Verify that vp=2kBTm.`Ch. 2 - Verify the normalization equation 0f(v)dv=1 In...Ch. 2 - Verify that v=8kBTm. Make the same scaling...Ch. 2 - Verify that vrms=v2=3kBTm.`
Additional Science Textbook Solutions
Find more solutions based on key concepts
Q1. What is the empirical formula of a compound with the molecular formula
Chemistry: A Molecular Approach (4th Edition)
The following data were obtained from a disk-diffusion test. Antibiotic Zone of Inhibition A 15 mm B 0 mm c 7 m...
Microbiology: An Introduction
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
3. What are serous membranes, and what are their functions?
Human Anatomy & Physiology (2nd Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig in answer)arrow_forwardPROBLEM 4 What is the resultant of the force system acting on the connection shown? 25 F₁ = 80 lbs IK 65° F2 = 60 lbsarrow_forwardThree point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.arrow_forward
- STRUCTURES I Homework #1: Force Systems Name: TA: PROBLEM 1 Determine the horizontal and vertical components of the force in the cable shown. PROBLEM 2 The horizontal component of force F is 30 lb. What is the magnitude of force F? 6 10 4 4 F = 600lbs F = ?arrow_forwardThe determined Wile E. Coyote is out once more to try to capture the elusive Road Runner of Loony Tunes fame. The coyote is strapped to a rocket, which provide a constant horizontal acceleration of 15.0 m/s2. The coyote starts off at rest 79.2 m from the edge of a cliff at the instant the roadrunner zips by in the direction of the cliff. If the roadrunner moves with constant speed, find the minimum velocity the roadrunner must have to reach the cliff before the coyote. (proper sig fig)arrow_forwardHello, I need some help with calculations for a lab, it is Kinematics: Finding Acceleration Due to Gravity. Equations: s=s0+v0t+1/2at2 and a=gsinθ. The hypotenuse,r, is 100cm (given) and a height, y, is 3.5 cm (given). How do I find the Angle θ1? And, for distance traveled, s, would all be 100cm? For my first observations I recorded four trials in seconds: 1 - 2.13s, 2 - 2.60s, 3 - 2.08s, & 4 - 1.95s. This would all go in the coloumn for time right? How do I solve for the experimental approximation of the acceleration? Help with trial 1 would be great so I can use that as a model for the other trials. Thanks!arrow_forward
- After the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2. A)How much time does it take to reach full speed? B) How far does Bowser travel while accelerating?arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. I believe side 1 is 60 degrees but could be wrong. Thank you.arrow_forwardAfter the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2.arrow_forward
- The drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. Thank you.arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m^2, while Surface (2) has an area of 3.90 m^2. The electric field in magnitude of 215 N/C. Please find the magnitude of the electric flux through surface (with both 1 and 2 combined) if the angle (theta) made between the electric field with surface (2) is 30.0 degrees. Thank you.arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m^2, while Surface (2) has an area of 3.90 m^2. The electric field in magnitude of 215 N/C. Please find the magnitude of the electric flux through surface (with both 1 and 2 combined) if the angle (theta) made between the electric field with surface (2) is 30.0 degrees. Thank you.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College