Concept explainers
The gauge pressure in your car tires is
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
University Physics Volume 2
Additional Science Textbook Solutions
Organic Chemistry (8th Edition)
Campbell Biology (11th Edition)
Microbiology: An Introduction
Biology: Life on Earth (11th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- A vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P18.40). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find the height h in Figure P18.40. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder. Figure P18.40arrow_forwardReview. (a) Derive an expression for the buoyant force on a spherical balloon, submerged in water, as a function of the depth h below the surface, the volume Vi of the balloon at the surface, the pressure P0 at the surface, and the density w of the water. Assume the water temperature does not change with depth, (b) Does the bouyant force increase or decrease as the balloon is submerged? (c) At what depth is the buoyant force one-half the surface value?arrow_forwardA cylinder with a piston holds 0.50 m3 of oxygen at an absolute pressure of 4.0 atm. The piston is pulled outward, increasing the volume of the gas until the pressure drops to 1.0 atm. If the temperature stays constant, what new volume does the gas occupy? (a) 1.0 m3 (b) 1.5 m3 (c) 2.0 m3 (d) 0.12 m3 (e) 2.5 m3arrow_forward
- At what temperature is the average speed of carbon dioxide molecules ( M=44.0 g/mol) 510 m/s?arrow_forwardHow many cubic meters of helium are required to lift a light balloon with a 400-kg payload to a height of 8 000 m? Take Hc = 0.179 kg/m3. Assume the balloon maintains a constant volume and the density of air decreases with the altitude z according to the expression pair = 0e-z/8 000, where z is in meters and 0 = 1.20 kg/m3 is the density of air at sea level.arrow_forward(a) An ideal gas occupies a volume of 1.0 cm3 at 20.C and atmospheric pressure. Determine the number of molecules of gas in the container, (b) If the pressure of the 1.0-cm3 volume is reduced to 1.0 1011 Pa (an extremely good vacuum) while the temperature remains constant, how many moles of gas remain in the container?arrow_forward
- A cylinder that has a 40.0-cm radius and is 50.0 cm deep is filled with air at 20.0C and 1.00 atm (Fig. P10.74a). A 20.0-kg piston is now lowered into the cylinder, compressing the air trapped inside as it takes equilibrium height hi (Fig. P16.74b). Finally, a 25.0-kg dog stands on the piston, further compressing the air, which remains at 20C (Fig. P16.74c). (a) How far down (h) does the piston move when the dog steps onto it? (b) To what temperature should the gas be warmed to raise the piston and dog back to hi?arrow_forwardA vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P16.56). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find die height h in Figure P16.56. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder.arrow_forwardA gas is in a container of volume V0 at pressure P0. It is being pumped out of the container by a piston pump. Each stroke of the piston removes a volume Vs through valve A and then pushes the air out through valve B as shown in Figure P19.74. Derive an expression that relates the pressure Pn of the remaining gas to the number of strokes n that have been applied to the container. FIGURE P19.74arrow_forward
- high-pressure gas cylinder contains 50.0 L of toxic gas at a pressure of 1.35 × 107 Pa and a temperature of 25.0°C. Its valve leaks after the cylinder is dropped. The cylinder is cooled to dry ice temperature (-78.5°C) to reduce the leak rate and pressure so that it can be safely repaired. A) what is the final pressure, in pascals, in the tank assuming negligible amount of gas leaks while being cooled and that there is no phase change ? B) What is the final pressure in pascals if one tenth of the gas escapes during the process? C) to what tempature in kelvins must tank be cooled from inital state to reduce the pressure to 1.00 atm (assuming the gas does not change phase and there is no leakage during cooling)?arrow_forwardAt the end of a warm autumn day, you measure the air pressure in your car's tires and write down their pressure as 2.41 × 105 Pa (about 35 psi) when the outside temperature is 23°C. It cools down quite a bit overnight to -5°C. If you were to measure the air pressure in the tire on that cool morning, what pressure would you measure? Assume that you can ignore the change in the volume of the tire and that no air is released from the tire overnight.arrow_forwardA high-pressure gas cylinder contains 50.0 L of toxic gas at a pressure of 1.55 × 107 Pa and a temperature of 25.0°C. Its valve leaks after the cylinder is dropped. The cylinder is cooled to dry ice temperature (-78.5°C) to reduce the leak rate and pressure so that it can be safely repaired. What is the final pressure, in pascals, in the tank, assuming a negligible amount of gas leaks while being cooled and that there is no phase change? To what temperature, in kelvins, must the tank be cooled from its initial state to reduce the pressure to 1.00 atm (assuming the gas does not change phase and that there is no leakage during cooling)?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning