Computer Systems: A Programmer's Perspective (3rd Edition)
Computer Systems: A Programmer's Perspective (3rd Edition)
3rd Edition
ISBN: 9780134092669
Author: Bryant, Randal E. Bryant, David R. O'Hallaron, David R., Randal E.; O'Hallaron, Bryant/O'hallaron
Publisher: PEARSON
Question
Book Icon
Chapter 2, Problem 2.88HW
Program Plan Intro

IEEE floating-point representation:

The IEEE floating-point standard denotes a number in a form  V = (-1)S × M × 2E.

From the above form,

  • The sign is denoted by “s”. It is used to define whether the number is in negative or positive.
    • If the number is positive, then “s” is “0”.
    • If the number is negative, then “s” is “1”.
  • The significand is denoted by “M”. It is a fractional binary number.
    • The number ranges either between “1” and “2 - ” or between “0” and “1 - ”.
  • The exponent is denoted by “E”. Its weights the value by a power of 2.

In floating-point representation, the bit is denoted by three fields such as sign, exponent and fraction field.

  • The single sign bit “s” directly converts the sign
    “s”.
  • The k-bit exponent field exp=ek-1..........e1e0 converts the exponent “E”.
  • The n-bit fraction field frac=fn-1..........f1f0 converts the significant “M”.
  • There are two formats are used for floating-point bit representation. They are “32-bit” format and “64-bit” format.
  • “32-bit” format:
    • It is the single precision format.
    • In this format, “1” bit for sign field, “8” bit for exponent field and “23” bits for fraction field.

Computer Systems: A Programmer's Perspective (3rd Edition), Chapter 2, Problem 2.88HW , additional homework tip  1

  • “64-bit” format:
    • It is the double precision format.
    • In this format, “1” bit for sign field, “11” bit for exponent field and “52” bits for fraction field.

Computer Systems: A Programmer's Perspective (3rd Edition), Chapter 2, Problem 2.88HW , additional homework tip  2

There are three types of cases occurs based on the single precision format. It is occur when the value encoded by a given bit representation can be divided into three different cases.

  • Case 1: Normalized value
    • This case occurs when the bit of “exp” is neither all zeros or nor all ones.
      • Numeric value for all zeros is “0”.
      • Numeric value for all ones is “255”.
    • In this case, the exponent value, E = e – bias.
      • Here, “e” represents unsigned number containing bit representation ek-1..........e1e0 and bias value is 2k-1-1.
    • The fraction field “frac” is interpreted as representing the fractional value “f”.
    • The significand “M” is “1 + f”.

Computer Systems: A Programmer's Perspective (3rd Edition), Chapter 2, Problem 2.88HW , additional homework tip  3

  • Case 2: Denormalized value
    • This case occurs when the exponent field is all zeros.
    • The exponent value is “E = 1 – Bias”.
    • Here the value of significand “M” is “M = f”.

Computer Systems: A Programmer's Perspective (3rd Edition), Chapter 2, Problem 2.88HW , additional homework tip  4

  • Case 3: Special values
    • This case occurs in two formats such as “infinity” and “NaN”.
    • When the exponent field is all ones and the fraction field is all zeros, then the resulting value is represented by “infinity”.

Computer Systems: A Programmer's Perspective (3rd Edition), Chapter 2, Problem 2.88HW , additional homework tip  5

  • When the exponent field is all ones and the fraction field is not all zeros, then the resulting value is represented by “NaN”.

Computer Systems: A Programmer's Perspective (3rd Edition), Chapter 2, Problem 2.88HW , additional homework tip  6

Blurred answer
Students have asked these similar questions
using r language
I need help to solve a simple problem using Grover’s algorithm, where the solution is not necessarily known beforehand. The problem is a 2×2 binary sudoku with two rules: • No column may contain the same value twice. • No row may contain the same value twice.   Each square in the sudoku is assigned to a variable as follows:   We want to design a quantum circuit that outputs a valid solution to this sudoku. While using Grover’s algorithm for this task is not necessarily practical, the goal is to demonstrate how classical decision problems can be converted into oracles for Grover’s algorithm.   Turning the Problem into a Circuit   To solve this, an oracle needs to be created that helps identify valid solutions. The first step is to construct a classical function within a quantum circuit that checks whether a given state satisfies the sudoku rules.   Since we need to check both columns and rows, there are four conditions to verify: v0 ≠ v1   # Check top row   v2 ≠ v3   # Check bottom row…
using r language

Chapter 2 Solutions

Computer Systems: A Programmer's Perspective (3rd Edition)

Ch. 2.1 - Prob. 2.11PPCh. 2.1 - Prob. 2.12PPCh. 2.1 - Prob. 2.13PPCh. 2.1 - Prob. 2.14PPCh. 2.1 - Prob. 2.15PPCh. 2.1 - Prob. 2.16PPCh. 2.2 - Prob. 2.17PPCh. 2.2 - Practice Problem 2.18 (solution page 149) In...Ch. 2.2 - Prob. 2.19PPCh. 2.2 - Prob. 2.20PPCh. 2.2 - Prob. 2.21PPCh. 2.2 - Prob. 2.22PPCh. 2.2 - Prob. 2.23PPCh. 2.2 - Prob. 2.24PPCh. 2.2 - Prob. 2.25PPCh. 2.2 - Practice Problem 2.26 (solution page 151) You are...Ch. 2.3 - Prob. 2.27PPCh. 2.3 - Prob. 2.28PPCh. 2.3 - Prob. 2.29PPCh. 2.3 - Practice Problem 2.30 (solution page 153) Write a...Ch. 2.3 - Prob. 2.31PPCh. 2.3 - Practice Problem 2.32 (solution page 153) You are...Ch. 2.3 - Prob. 2.33PPCh. 2.3 - Prob. 2.34PPCh. 2.3 - Practice Problem 2.35 (solution page 154) You are...Ch. 2.3 - Prob. 2.36PPCh. 2.3 - Practice Problem 2.37 solution page 155 You are...Ch. 2.3 - Prob. 2.38PPCh. 2.3 - Prob. 2.39PPCh. 2.3 - Practice Problem 2.40 (solution page 156) For each...Ch. 2.3 - Prob. 2.41PPCh. 2.3 - Practice Problem 2.42 (solution page 156) Write a...Ch. 2.3 - Practice Problem 2.43 (solution page 157) In the...Ch. 2.3 - Prob. 2.44PPCh. 2.4 - Prob. 2.45PPCh. 2.4 - Prob. 2.46PPCh. 2.4 - Prob. 2.47PPCh. 2.4 - Prob. 2.48PPCh. 2.4 - Prob. 2.49PPCh. 2.4 - Prob. 2.50PPCh. 2.4 - Prob. 2.51PPCh. 2.4 - Prob. 2.52PPCh. 2.4 - Practice Problem 2.53 (solution page 160) Fill in...Ch. 2.4 - Practice Problem 2.54 (solution page 160) Assume...Ch. 2 - Compile and run the sample code that uses...Ch. 2 - Try running the code for show_bytes for different...Ch. 2 - Prob. 2.57HWCh. 2 - Write a procedure is_little_endian that will...Ch. 2 - Prob. 2.59HWCh. 2 - Prob. 2.60HWCh. 2 - Prob. 2.61HWCh. 2 - Write a function int_shifts_are_arithmetic() that...Ch. 2 - Fill in code for the following C functions....Ch. 2 - Write code to implement the following function: /...Ch. 2 - Write code to implement the following function: /...Ch. 2 - Write code to implement the following function: / ...Ch. 2 - You are given the task of writing a procedure...Ch. 2 - Prob. 2.68HWCh. 2 - Write code for a function with the following...Ch. 2 - Write code for the function with the following...Ch. 2 - You just started working for a company that is...Ch. 2 - You are given the task of writing a function that...Ch. 2 - Write code for a function with the following...Ch. 2 - Write a function with the following prototype: /...Ch. 2 - Prob. 2.75HWCh. 2 - The library function calloc has the following...Ch. 2 - Prob. 2.77HWCh. 2 - Write code for a function with the following...Ch. 2 - Prob. 2.79HWCh. 2 - Write code for a function threefourths that, for...Ch. 2 - Prob. 2.81HWCh. 2 - Prob. 2.82HWCh. 2 - Prob. 2.83HWCh. 2 - Prob. 2.84HWCh. 2 - Prob. 2.85HWCh. 2 - Intel-compatible processors also support an...Ch. 2 - Prob. 2.87HWCh. 2 - Prob. 2.88HWCh. 2 - We are running programs on a machine where values...Ch. 2 - You have been assigned the task of writing a C...Ch. 2 - Prob. 2.91HWCh. 2 - Prob. 2.92HWCh. 2 - following the bit-level floating-point coding...Ch. 2 - Following the bit-level floating-point coding...Ch. 2 - Following the bit-level floating-point coding...Ch. 2 - Following the bit-level floating-point coding...Ch. 2 - Prob. 2.97HW
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Text book image
EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT
Text book image
COMPREHENSIVE MICROSOFT OFFICE 365 EXCE
Computer Science
ISBN:9780357392676
Author:FREUND, Steven
Publisher:CENGAGE L
Text book image
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage
Text book image
A+ Guide to Hardware (Standalone Book) (MindTap C...
Computer Science
ISBN:9781305266452
Author:Jean Andrews
Publisher:Cengage Learning