Computer Systems: A Programmer's Perspective (3rd Edition)
Computer Systems: A Programmer's Perspective (3rd Edition)
3rd Edition
ISBN: 9780134092669
Author: Bryant, Randal E. Bryant, David R. O'Hallaron, David R., Randal E.; O'Hallaron, Bryant/O'hallaron
Publisher: PEARSON
Question
Book Icon
Chapter 2, Problem 2.87HW
Program Plan Intro

IEEE floating-point representation:

The IEEE floating-point standard denotes a number in a form  V = (-1)S × M × 2E

From the above form,

  • The sign is denoted by “s”. It is used to determine whether the number is in negative or positive.
    • If the number is positive, then “s” is “0”.
    • If the number is negative, then “s” is “1”.
  • The significand is denoted by “M”. It is a fractional binary number.
    • The number ranges either between “1” and “2 - ” or between “0” and “1 - ”.
  • The exponent is represented by “E”. Its weights the value by a power of 2.

In floating-point representation, the bit is represented by three fields such as sign, exponent and fraction field.

  • The single sign bit “s” directly converts the sign
    “s”.
  • The k-bit exponent field exp=ek-1..........e1e0 converts the exponent “E”.
  • The n-bit fraction field frac=fn-1..........f1f0 converts the significant “M”.
    • There are two formats are used for floating-point bit representation. They are “32-bit” format and “64-bit” format.
    • “32-bit” format:
      • It is the single precision format.
      • In this format, “1” bit for sign field, “8” bit for exponent field and “23” bits for fraction field.

Computer Systems: A Programmer's Perspective (3rd Edition), Chapter 2, Problem 2.87HW , additional homework tip  1

  • “64-bit” format:
    • It is the double precision format.
    • In this format, “1” bit for sign field, “11” bit for exponent field and “52” bits for fraction field.

Computer Systems: A Programmer's Perspective (3rd Edition), Chapter 2, Problem 2.87HW , additional homework tip  2

There are three types of cases occurs based on the single precision format. It is occur when the value encoded by a given bit representation can be divided into three different cases.

  • Case 1: Normalized value
    • This case occurs when the bit of “exp” is neither all zeros or nor all ones.
      • Numeric value for all zeros is “0”.
      • Numeric value for all ones is “255”.
    • In this case, the exponent value, E = e – bias.
      • Here, “e” represents unsigned number containing bit representation ek-1..........e1e0 and bias value is 2k-1-1.
    • The fraction field “frac” is interpreted as representing the fractional value “f”.
    • The significand “M” is “1 + f”.

Computer Systems: A Programmer's Perspective (3rd Edition), Chapter 2, Problem 2.87HW , additional homework tip  3

  • Case 2: Denormalized value
    • This case occurs when the exponent field is all zeros.
    • The exponent value is “E = 1 – Bias”.
    • Here the value of significand “M” is “M = f”.

Computer Systems: A Programmer's Perspective (3rd Edition), Chapter 2, Problem 2.87HW , additional homework tip  4

  • Case 3: Special values
    • This case occurs in two formats such as “infinity” and “NaN”.
    • When the exponent field is all ones and the fraction field is all zeros, then the resulting value is represented by “infinity”.

Computer Systems: A Programmer's Perspective (3rd Edition), Chapter 2, Problem 2.87HW , additional homework tip  5

  • When the exponent field is all ones and the fraction field is not all zeros, then the resulting value is represented by “NaN”.

Computer Systems: A Programmer's Perspective (3rd Edition), Chapter 2, Problem 2.87HW , additional homework tip  6

Blurred answer
Students have asked these similar questions
Conduct a comprehensive study on Botnet networks, focusing on their architecture and functionality. Provide a detailed analysis of their control mechanisms via C2 (Command and Control) structures, and classify the different types of Botnets (centralized, decentralized, hybrid). Explain their primary uses in offensive contexts and discuss the evolution of detection and mitigation techniques in light of technological advancements in cybersecurity. Additional Note: Design a complete Botnet simulator using Python programming, including both the C2 server and the bot client. Demonstrate how the bots connect to the server, and how commands are sent and received between them.
I want to explain my work in Python botnets and it is completely working on the tkinter function with an explanation of how I can work on it with an introduction about what it is and what its benefit is
When you connect your device to Wi-Fi, what happens "under the hood"? Explain in detail, with pictures, what it's like.

Chapter 2 Solutions

Computer Systems: A Programmer's Perspective (3rd Edition)

Ch. 2.1 - Prob. 2.11PPCh. 2.1 - Prob. 2.12PPCh. 2.1 - Prob. 2.13PPCh. 2.1 - Prob. 2.14PPCh. 2.1 - Prob. 2.15PPCh. 2.1 - Prob. 2.16PPCh. 2.2 - Prob. 2.17PPCh. 2.2 - Practice Problem 2.18 (solution page 149) In...Ch. 2.2 - Prob. 2.19PPCh. 2.2 - Prob. 2.20PPCh. 2.2 - Prob. 2.21PPCh. 2.2 - Prob. 2.22PPCh. 2.2 - Prob. 2.23PPCh. 2.2 - Prob. 2.24PPCh. 2.2 - Prob. 2.25PPCh. 2.2 - Practice Problem 2.26 (solution page 151) You are...Ch. 2.3 - Prob. 2.27PPCh. 2.3 - Prob. 2.28PPCh. 2.3 - Prob. 2.29PPCh. 2.3 - Practice Problem 2.30 (solution page 153) Write a...Ch. 2.3 - Prob. 2.31PPCh. 2.3 - Practice Problem 2.32 (solution page 153) You are...Ch. 2.3 - Prob. 2.33PPCh. 2.3 - Prob. 2.34PPCh. 2.3 - Practice Problem 2.35 (solution page 154) You are...Ch. 2.3 - Prob. 2.36PPCh. 2.3 - Practice Problem 2.37 solution page 155 You are...Ch. 2.3 - Prob. 2.38PPCh. 2.3 - Prob. 2.39PPCh. 2.3 - Practice Problem 2.40 (solution page 156) For each...Ch. 2.3 - Prob. 2.41PPCh. 2.3 - Practice Problem 2.42 (solution page 156) Write a...Ch. 2.3 - Practice Problem 2.43 (solution page 157) In the...Ch. 2.3 - Prob. 2.44PPCh. 2.4 - Prob. 2.45PPCh. 2.4 - Prob. 2.46PPCh. 2.4 - Prob. 2.47PPCh. 2.4 - Prob. 2.48PPCh. 2.4 - Prob. 2.49PPCh. 2.4 - Prob. 2.50PPCh. 2.4 - Prob. 2.51PPCh. 2.4 - Prob. 2.52PPCh. 2.4 - Practice Problem 2.53 (solution page 160) Fill in...Ch. 2.4 - Practice Problem 2.54 (solution page 160) Assume...Ch. 2 - Compile and run the sample code that uses...Ch. 2 - Try running the code for show_bytes for different...Ch. 2 - Prob. 2.57HWCh. 2 - Write a procedure is_little_endian that will...Ch. 2 - Prob. 2.59HWCh. 2 - Prob. 2.60HWCh. 2 - Prob. 2.61HWCh. 2 - Write a function int_shifts_are_arithmetic() that...Ch. 2 - Fill in code for the following C functions....Ch. 2 - Write code to implement the following function: /...Ch. 2 - Write code to implement the following function: /...Ch. 2 - Write code to implement the following function: / ...Ch. 2 - You are given the task of writing a procedure...Ch. 2 - Prob. 2.68HWCh. 2 - Write code for a function with the following...Ch. 2 - Write code for the function with the following...Ch. 2 - You just started working for a company that is...Ch. 2 - You are given the task of writing a function that...Ch. 2 - Write code for a function with the following...Ch. 2 - Write a function with the following prototype: /...Ch. 2 - Prob. 2.75HWCh. 2 - The library function calloc has the following...Ch. 2 - Prob. 2.77HWCh. 2 - Write code for a function with the following...Ch. 2 - Prob. 2.79HWCh. 2 - Write code for a function threefourths that, for...Ch. 2 - Prob. 2.81HWCh. 2 - Prob. 2.82HWCh. 2 - Prob. 2.83HWCh. 2 - Prob. 2.84HWCh. 2 - Prob. 2.85HWCh. 2 - Intel-compatible processors also support an...Ch. 2 - Prob. 2.87HWCh. 2 - Prob. 2.88HWCh. 2 - We are running programs on a machine where values...Ch. 2 - You have been assigned the task of writing a C...Ch. 2 - Prob. 2.91HWCh. 2 - Prob. 2.92HWCh. 2 - following the bit-level floating-point coding...Ch. 2 - Following the bit-level floating-point coding...Ch. 2 - Following the bit-level floating-point coding...Ch. 2 - Following the bit-level floating-point coding...Ch. 2 - Prob. 2.97HW
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Computer Networking: A Top-Down Approach (7th Edi...
Computer Engineering
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:PEARSON
Text book image
Computer Organization and Design MIPS Edition, Fi...
Computer Engineering
ISBN:9780124077263
Author:David A. Patterson, John L. Hennessy
Publisher:Elsevier Science
Text book image
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:9781337569330
Author:Jill West, Tamara Dean, Jean Andrews
Publisher:Cengage Learning
Text book image
Concepts of Database Management
Computer Engineering
ISBN:9781337093422
Author:Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:Cengage Learning
Text book image
Prelude to Programming
Computer Engineering
ISBN:9780133750423
Author:VENIT, Stewart
Publisher:Pearson Education
Text book image
Sc Business Data Communications and Networking, T...
Computer Engineering
ISBN:9781119368830
Author:FITZGERALD
Publisher:WILEY