
University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 2.73P
Look Out Below. Sam heaves a 16-lb shot straight up, giving it a constant upward acceleration from rest of 35.0 m/s2 for 64.0 cm. He releases it 2.20 m above the ground. Ignore air resistance. (a) What is the speed of the shot when Sam releases it? (b) How high above the ground does it go? (c) How much time does he have to get out of its way before it returns to the height of the top of his head, 1.83 m above the ground?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
In the figure Q = 5.7 nC and all other quantities are accurate to 2 significant figures. What is the magnitude of the force on the charge Q? (k = 1/4πε 0 = 8.99 × 109 N · m2/C2)
Now add a fourth charged particle, particle 3, with positive charge q3, fixed in the yz-plane at (0,d2,d2). What is the net force F→ on particle 0 due solely to this charge? Express your answer (a vector) using k, q0, q3, d2, i^, j^, and k^. Include only the force caused by particle 3.
For a tornadoes and hurricanes, which of the following is most critical?
an alert
a watch
a warning
a prediction
Chapter 2 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 2.1 - Each of the following five trips takes one hour....Ch. 2.2 - TEST YOUR UNDERSTANDING OF SECTION 2.2 Figure 2.9...Ch. 2.3 - Look again at the x-t graph in Fig. 2.9 at the end...Ch. 2.4 - Four possible vx-t graphs are shown for the two...Ch. 2.5 - If you toss a ball upward with a certain initial...Ch. 2 - Does the speedometer of a car measure speed or...Ch. 2 - The black dots at the top of Fig. Q2.2 represent a...Ch. 2 - Can an object with constant acceleration reverse...Ch. 2 - Under what conditions is average velocity equal to...Ch. 2 - Is it possible for an object to be (a) slowing...
Ch. 2 - Under what conditions does the magnitude of the...Ch. 2 - When a Dodge Viper is at Elwoods Car Wash, a BMW...Ch. 2 - A driver in Massachusetts was sent to traffic...Ch. 2 - Can you have zero displacement and nonzero average...Ch. 2 - Can you have zero acceleration and nonzero...Ch. 2 - Can you have zero velocity and nonzero average...Ch. 2 - An automobile is traveling west. Can it have a...Ch. 2 - The officials truck in Fig. 2.2 is at x1 = 277 m...Ch. 2 - Under constant acceleration the average velocity...Ch. 2 - You throw a baseball straight up in the air so...Ch. 2 - Prove these statements: (a) As long as you can...Ch. 2 - A dripping water faucet steadily releases drops...Ch. 2 - If you know the initial position and initial...Ch. 2 - From the top of a tall building, you throw one...Ch. 2 - You run due cast at a constant speed of 3.00 m/s...Ch. 2 - An object is thrown straight up into the air and...Ch. 2 - When you drop an object from a certain height, it...Ch. 2 - A car travels in the +x-direction on a straight...Ch. 2 - In an experiment, a shearwater (a seabird) was...Ch. 2 - Trip Home. You normally drive on the freeway...Ch. 2 - From Pillar to Post. Starting from a pillar, you...Ch. 2 - Starting from the front door of a ranch house, you...Ch. 2 - A Honda Civic travels in a straight line along a...Ch. 2 - CALC A car is stopped at a traffic light. It then...Ch. 2 - CALC A bird is flying due east. Its distance from...Ch. 2 - A ball moves in a straight line (the x-axis). The...Ch. 2 - A physics professor leaves her house and walks...Ch. 2 - A test car travels in a straight line along the...Ch. 2 - Figure E2.12 shows the velocity of a solar-powered...Ch. 2 - The Fastest (and Most Expensive) Car! The table...Ch. 2 - CALC A race car starts from rest and travels east...Ch. 2 - CALC A turtle crawls along a straight line, which...Ch. 2 - An astronaut has left the International Space...Ch. 2 - CALC A cars velocity as a function of time is...Ch. 2 - CALC The position of the front bumper of a test...Ch. 2 - An antelope moving with constant acceleration...Ch. 2 - BIO Blackout? A jet fighter pilot wishes to...Ch. 2 - A Fast Pitch. The fastest measured pitched...Ch. 2 - A Tennis Serve. In the fastest measured tennis...Ch. 2 - BIO Automobile Air Bags. The human body can...Ch. 2 - BIO A pilot who accelerates at more than 4g begins...Ch. 2 - BIO Air-Bag Injuries. During an auto accident, the...Ch. 2 - BIO Prevention of Hip Fractures. Falls resulting...Ch. 2 - BIO Are We Martians? It has been suggested, and...Ch. 2 - Entering the Freeway. A car sits on an entrance...Ch. 2 - At launch a rocket ship weighs 4.5 million pounds....Ch. 2 - A cat walks in a straight line, which we shall...Ch. 2 - The graph in Fig. E2.31 shows the velocity of a...Ch. 2 - Two cars, A and B, move along the x-axis. Figure...Ch. 2 - A small block has constant acceleration as it...Ch. 2 - At the instant the traffic light turns green, a...Ch. 2 - (a) If a flea can jump straight up to a height of...Ch. 2 - A small rock is thrown vertically upward with a...Ch. 2 - A juggler throws a bowling pin straight up with an...Ch. 2 - You throw a glob of putty straight up toward the...Ch. 2 - A tennis ball on Mars, where the acceleration due...Ch. 2 - Touchdown on the Moon. A lunar lander is making...Ch. 2 - A Simple Reaction-Time Test. A meter stick is held...Ch. 2 - A brick is dropped (zero initial speed) from the...Ch. 2 - Launch Failure. A 7500-kg rocket blasts off...Ch. 2 - A hot-air balloonist, rising vertically with a...Ch. 2 - BIO The rocket-driven sled Sonic Wind No. 2, used...Ch. 2 - An egg is thrown nearly vertically upward from a...Ch. 2 - A 15-kg rock is dropped from rest on the earth and...Ch. 2 - A large boulder is ejected vertically upward from...Ch. 2 - You throw a small rock straight up front the edge...Ch. 2 - CALC A small object moves along the x-axis with...Ch. 2 - CALC A rocket starts from rest and moves upward...Ch. 2 - CALC The acceleration of a bus is given by ax(t) =...Ch. 2 - CALC The acceleration of a motorcycle is given by...Ch. 2 - BIO Flying Leap of the Flea. High-speed motion...Ch. 2 - BIO A typical male sprinter can maintain his...Ch. 2 - CALC A lunar lander is descending toward the moons...Ch. 2 - Earthquake Analysis. Earthquakes produce several...Ch. 2 - A brick is dropped from the roof of a tall...Ch. 2 - A rocket carrying a satellite is accelerating...Ch. 2 - A subway train starts from rest at a station and...Ch. 2 - A gazelle is running in a straight line (the...Ch. 2 - Collision. The engineer of a passenger train...Ch. 2 - A ball starts from rest and rolls down a hill with...Ch. 2 - Two cars start 200 m apart and drive toward each...Ch. 2 - A car and a truck start from rest at the same...Ch. 2 - You are standing at rest at a bus stop. A bus...Ch. 2 - Passing. The driver of a car wishes to pass a...Ch. 2 - CALC An objects velocity is measured to be vx(t) =...Ch. 2 - CALC The acceleration of a particle is given by...Ch. 2 - Egg Drop. You are on the roof of the physics...Ch. 2 - A certain volcano on earth can eject rocks...Ch. 2 - An entertainer juggles balls while doing other...Ch. 2 - Look Out Below. Sam heaves a 16-lb shot straight...Ch. 2 - A flowerpot falls off a windowsill and passes the...Ch. 2 - Two stones are thrown vertically upward from the...Ch. 2 - A Multistage Rocket. In the first stage of a...Ch. 2 - During your summer internship for an aerospace...Ch. 2 - A physics teacher performing an outdoor...Ch. 2 - A helicopter carrying Dr. Evil takes off with a...Ch. 2 - Cliff Height. You are climbing in the High Sierra...Ch. 2 - CALC An object is moving along the x-axis. At t =...Ch. 2 - A ball is thrown straight up from the ground with...Ch. 2 - CALC Cars A and B travel in a straight line. The...Ch. 2 - DATA In your physics lab you release a small...Ch. 2 - DATA In a physics lab experiment, you release a...Ch. 2 - DATA A model car starts from rest and travels in a...Ch. 2 - In the vertical jump, an athlete starts from a...Ch. 2 - Catching the Bus. A student is running at her top...Ch. 2 - A ball is thrown straight up from the edge of the...Ch. 2 - BIO BLOOD FLOW IN THE HEART. The human circulatory...Ch. 2 - BIO BLOOD FLOW IN THE HEART. The human circulatory...Ch. 2 - BIO BLOOD FLOW IN THE HEART. The human circulatory...
Additional Science Textbook Solutions
Find more solutions based on key concepts
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Q1. Which wavelength of light has the highest frequency?
a) 10 nm
b) 10 mm
c) 1 nm
d) 1 mm
Chemistry: A Molecular Approach (4th Edition)
Why is an endospore called a resting structure? Of what advantage is an endospore to a bacterial cell?
Microbiology: An Introduction
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When a warm front advances up and over a cold front, what is it called? front inversion stationary front cold front occlusion warm front occlusionarrow_forward1) Consider two positively charged particles, one of charge q0 (particle 0) fixed at the origin, and another of charge q1 (particle 1) fixed on the y-axis at (0,d1,0). What is the net force F→ on particle 0 due to particle 1? Express your answer (a vector) using any or all of k, q0, q1, d1, i^, j^, and k^. 2) Now add a third, negatively charged, particle, whose charge is −q2− (particle 2). Particle 2 fixed on the y-axis at position (0,d2,0). What is the new net force on particle 0, from particle 1 and particle 2? Express your answer (a vector) using any or all of k, q0, q1, q2, d1, d2, i^, j^, and k^. 3) Particle 0 experiences a repulsion from particle 1 and an attraction toward particle 2. For certain values of d1 and d2, the repulsion and attraction should balance each other, resulting in no net force. For what ratio d1/d2 is there no net force on particle 0? Express your answer in terms of any or all of the following variables: k, q0, q1, q2.arrow_forwardA 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first. (a) What (in V) is the peak emf? 7.17 V (b) At what time (in s) is the peak emf first reached? 0.196 S (c) At what time (in s) is the emf first at its most negative? 0.589 x s (d) What is the period (in s) of the AC voltage output? 0.785 Sarrow_forward
- A bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?arrow_forwardFor what type of force is it not possible to define a potential energy expression?arrow_forward10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram.arrow_forward
- Consider 1 mole of supercooled water at -10°C. Calculate the entropy change of the water when the supercooled water freezes at -10°C and 1 atm. Useful data: Cp (ice) = 38 J mol-1 K-1 Cp (water) 75J mol −1 K -1 Afus H (0°C) 6026 J mol −1 Assume Cp (ice) and Cp (water) to be independent of temperature.arrow_forwardThe molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is 30.72 kJ/mol. Assuming that AvapH and AvapS stay constant at their values at 80.09°C, calculate the value of AvapG at 75.0°C, 80.09°C, and 85.0°C. Hint: Remember that the liquid and vapor phases will be in equilibrium at the normal boiling point.arrow_forward3. The entropy of an ideal gas is S = Nkg In V. Entropy is a state function rather than a path function, and in this problem, you will show an example of the entropy change for an ideal gas being the same when you go between the same two states by two different pathways. A. Express ASV = S2 (V2) - S₁(V1), the change in entropy upon changing the volume from V₁to V2, at fixed particle number N and energy, U. B. Express ASN = S₂(N₂) - S₁ (N₁), the change in entropy upon changing the particle number from N₁ to N2, at fixed volume V and energy U. C. Write an expression for the entropy change, AS, for a two-step process (V₁, N₁) → (V2, N₁) → (V2, N₂) in which the volume changes first at fixed particle number, then the particle number changes at fixed volume. Again, assume energy is constant.arrow_forward
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forward6. We used the constant volume heat capacity, Cv, when we talked about thermodynamic cycles. It acts as a proportionality constant between energy and temperature: dU = C₁dT. You can also define a heat capacity for constant pressure processes, Cp. You can think of enthalpy playing a similar role to energy, but for constant pressure processes δαρ C = (37) - Sup Ср ат P = ат Starting from the definition of enthalpy, H = U + PV, find the relationship between Cy and Cp for an ideal gas.arrow_forwardPure membranes of dipalmitoyl lecithin phospholipids are models of biological membranes. They melt = 41°C. Reversible melting experiments indicate that at Tm AHm=37.7 kJ mol-1. Calculate: A. The entropy of melting, ASm- B. The Gibbs free energy of melting, AGm- C. Does the membrane become more or less ordered upon melting? D. There are 32 rotatable CH2 CH2 bonds in each molecule that can rotate more freely if the membrane melts. What is the increase in multiplicity on melting a mole of bonds?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY