
University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 2.33E
A small block has constant acceleration as it slides down a frictionless incline. The block is released from rest at the top of the incline, and its speed after it has traveled 6.80 m to the bottom of the incline is 3.80 m/s. What is the speed of the block when it is 3.40 m from the top of the incline?
Expert Solution & Answer

Learn your wayIncludes step-by-step video

schedule03:52
Students have asked these similar questions
You want to fabricate a soft microfluidic chip like the one below. How would you go about
fabricating this chip knowing that you are targeting a channel with a square cross-sectional
profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the
process to form the inlet and outlet.
Square Cross Section
1. What are the key steps involved in the fabrication of a semiconductor device.
2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer
with the pattern below. Describe the process you would use.
High Aspect
Ratio
Trenches
Undoped Si Wafer
P-doped Si
3. You would like to deposit material within a high aspect ratio trench. What approach would you
use and why?
4. A person is setting up a small clean room space to carry out an outreach activity to educate high
school students about patterning using photolithography. They obtained a positive photoresist, a
used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask
with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full
resist gets developed, and they are unable to transfer the pattern onto the resist. Help them
troubleshoot and find out why pattern of transfer has not been successful.
5. You are given a composite…
Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values.
Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all steps
Chapter 2 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 2.1 - Each of the following five trips takes one hour....Ch. 2.2 - TEST YOUR UNDERSTANDING OF SECTION 2.2 Figure 2.9...Ch. 2.3 - Look again at the x-t graph in Fig. 2.9 at the end...Ch. 2.4 - Four possible vx-t graphs are shown for the two...Ch. 2.5 - If you toss a ball upward with a certain initial...Ch. 2 - Does the speedometer of a car measure speed or...Ch. 2 - The black dots at the top of Fig. Q2.2 represent a...Ch. 2 - Can an object with constant acceleration reverse...Ch. 2 - Under what conditions is average velocity equal to...Ch. 2 - Is it possible for an object to be (a) slowing...
Ch. 2 - Under what conditions does the magnitude of the...Ch. 2 - When a Dodge Viper is at Elwoods Car Wash, a BMW...Ch. 2 - A driver in Massachusetts was sent to traffic...Ch. 2 - Can you have zero displacement and nonzero average...Ch. 2 - Can you have zero acceleration and nonzero...Ch. 2 - Can you have zero velocity and nonzero average...Ch. 2 - An automobile is traveling west. Can it have a...Ch. 2 - The officials truck in Fig. 2.2 is at x1 = 277 m...Ch. 2 - Under constant acceleration the average velocity...Ch. 2 - You throw a baseball straight up in the air so...Ch. 2 - Prove these statements: (a) As long as you can...Ch. 2 - A dripping water faucet steadily releases drops...Ch. 2 - If you know the initial position and initial...Ch. 2 - From the top of a tall building, you throw one...Ch. 2 - You run due cast at a constant speed of 3.00 m/s...Ch. 2 - An object is thrown straight up into the air and...Ch. 2 - When you drop an object from a certain height, it...Ch. 2 - A car travels in the +x-direction on a straight...Ch. 2 - In an experiment, a shearwater (a seabird) was...Ch. 2 - Trip Home. You normally drive on the freeway...Ch. 2 - From Pillar to Post. Starting from a pillar, you...Ch. 2 - Starting from the front door of a ranch house, you...Ch. 2 - A Honda Civic travels in a straight line along a...Ch. 2 - CALC A car is stopped at a traffic light. It then...Ch. 2 - CALC A bird is flying due east. Its distance from...Ch. 2 - A ball moves in a straight line (the x-axis). The...Ch. 2 - A physics professor leaves her house and walks...Ch. 2 - A test car travels in a straight line along the...Ch. 2 - Figure E2.12 shows the velocity of a solar-powered...Ch. 2 - The Fastest (and Most Expensive) Car! The table...Ch. 2 - CALC A race car starts from rest and travels east...Ch. 2 - CALC A turtle crawls along a straight line, which...Ch. 2 - An astronaut has left the International Space...Ch. 2 - CALC A cars velocity as a function of time is...Ch. 2 - CALC The position of the front bumper of a test...Ch. 2 - An antelope moving with constant acceleration...Ch. 2 - BIO Blackout? A jet fighter pilot wishes to...Ch. 2 - A Fast Pitch. The fastest measured pitched...Ch. 2 - A Tennis Serve. In the fastest measured tennis...Ch. 2 - BIO Automobile Air Bags. The human body can...Ch. 2 - BIO A pilot who accelerates at more than 4g begins...Ch. 2 - BIO Air-Bag Injuries. During an auto accident, the...Ch. 2 - BIO Prevention of Hip Fractures. Falls resulting...Ch. 2 - BIO Are We Martians? It has been suggested, and...Ch. 2 - Entering the Freeway. A car sits on an entrance...Ch. 2 - At launch a rocket ship weighs 4.5 million pounds....Ch. 2 - A cat walks in a straight line, which we shall...Ch. 2 - The graph in Fig. E2.31 shows the velocity of a...Ch. 2 - Two cars, A and B, move along the x-axis. Figure...Ch. 2 - A small block has constant acceleration as it...Ch. 2 - At the instant the traffic light turns green, a...Ch. 2 - (a) If a flea can jump straight up to a height of...Ch. 2 - A small rock is thrown vertically upward with a...Ch. 2 - A juggler throws a bowling pin straight up with an...Ch. 2 - You throw a glob of putty straight up toward the...Ch. 2 - A tennis ball on Mars, where the acceleration due...Ch. 2 - Touchdown on the Moon. A lunar lander is making...Ch. 2 - A Simple Reaction-Time Test. A meter stick is held...Ch. 2 - A brick is dropped (zero initial speed) from the...Ch. 2 - Launch Failure. A 7500-kg rocket blasts off...Ch. 2 - A hot-air balloonist, rising vertically with a...Ch. 2 - BIO The rocket-driven sled Sonic Wind No. 2, used...Ch. 2 - An egg is thrown nearly vertically upward from a...Ch. 2 - A 15-kg rock is dropped from rest on the earth and...Ch. 2 - A large boulder is ejected vertically upward from...Ch. 2 - You throw a small rock straight up front the edge...Ch. 2 - CALC A small object moves along the x-axis with...Ch. 2 - CALC A rocket starts from rest and moves upward...Ch. 2 - CALC The acceleration of a bus is given by ax(t) =...Ch. 2 - CALC The acceleration of a motorcycle is given by...Ch. 2 - BIO Flying Leap of the Flea. High-speed motion...Ch. 2 - BIO A typical male sprinter can maintain his...Ch. 2 - CALC A lunar lander is descending toward the moons...Ch. 2 - Earthquake Analysis. Earthquakes produce several...Ch. 2 - A brick is dropped from the roof of a tall...Ch. 2 - A rocket carrying a satellite is accelerating...Ch. 2 - A subway train starts from rest at a station and...Ch. 2 - A gazelle is running in a straight line (the...Ch. 2 - Collision. The engineer of a passenger train...Ch. 2 - A ball starts from rest and rolls down a hill with...Ch. 2 - Two cars start 200 m apart and drive toward each...Ch. 2 - A car and a truck start from rest at the same...Ch. 2 - You are standing at rest at a bus stop. A bus...Ch. 2 - Passing. The driver of a car wishes to pass a...Ch. 2 - CALC An objects velocity is measured to be vx(t) =...Ch. 2 - CALC The acceleration of a particle is given by...Ch. 2 - Egg Drop. You are on the roof of the physics...Ch. 2 - A certain volcano on earth can eject rocks...Ch. 2 - An entertainer juggles balls while doing other...Ch. 2 - Look Out Below. Sam heaves a 16-lb shot straight...Ch. 2 - A flowerpot falls off a windowsill and passes the...Ch. 2 - Two stones are thrown vertically upward from the...Ch. 2 - A Multistage Rocket. In the first stage of a...Ch. 2 - During your summer internship for an aerospace...Ch. 2 - A physics teacher performing an outdoor...Ch. 2 - A helicopter carrying Dr. Evil takes off with a...Ch. 2 - Cliff Height. You are climbing in the High Sierra...Ch. 2 - CALC An object is moving along the x-axis. At t =...Ch. 2 - A ball is thrown straight up from the ground with...Ch. 2 - CALC Cars A and B travel in a straight line. The...Ch. 2 - DATA In your physics lab you release a small...Ch. 2 - DATA In a physics lab experiment, you release a...Ch. 2 - DATA A model car starts from rest and travels in a...Ch. 2 - In the vertical jump, an athlete starts from a...Ch. 2 - Catching the Bus. A student is running at her top...Ch. 2 - A ball is thrown straight up from the edge of the...Ch. 2 - BIO BLOOD FLOW IN THE HEART. The human circulatory...Ch. 2 - BIO BLOOD FLOW IN THE HEART. The human circulatory...Ch. 2 - BIO BLOOD FLOW IN THE HEART. The human circulatory...
Additional Science Textbook Solutions
Find more solutions based on key concepts
16. On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a 6 iron. The free-fall a...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Why might H2 metabolism have evolved as a mechanism for energy conservation in the earliest organisms on Earth?
Brock Biology of Microorganisms (15th Edition)
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
Where are skeletal cartilages located?
Human Anatomy & Physiology (2nd Edition)
Which reactions are redox reactions? a. Al(s)+3Ag+(aq)Al3+(aq)+3Ag(s) b. 4K(s)+O2(g)2K2O(s) c. SO3(g)+H2O(l)H2S...
Introductory Chemistry (6th Edition)
Compare each of the mechanisms listed here with the mechanism for each of the two parts of the acid-catalyzed h...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave. What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all stepsarrow_forwardAnother worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk). Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?arrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forward
- An ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 505-Ω resistor, and a capacitor of capacitance 7.2 μF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 236 W? There is no inductance in the circuit.arrow_forwardAn L−R−C series circuit has R= 280 Ω . At the frequency of the source, the inductor has reactance XLL= 905 Ω and the capacitor has reactance XC= 485 Ω . The amplitude of the voltage across the inductor is 445 V . What is the amplitude of the voltage across the resistor and the capacitor? What is the voltage amplitude of the source? What is the rate at which the source is delivering electrical energy to the circuit?arrow_forwardA 0.185 H inductor is connected in series with a 98.5 Ω resistor and an ac source. The voltage across the inductor is vL=−(12.5V)sin[(476rad/s)t]vL. Derive an expression for the voltage vR across the resistor. Express your answer in terms of the variables L, R, VL (amplitude of the voltage across the inductor), ω, and t. What is vR at 2.13 ms ? Please explain all stepsarrow_forward
- A worker lifts a box under the following conditions:Horizontal distance (H): 30 cmInitial height (V): 60 cmVertical travel (D): 50 cmTorso rotation (A): 30°Frequency: 3 times/minute for 1 hourGrip: Good Question:What is the RWL for this task?What does this value mean in terms of occupational safety?arrow_forwardCan someone helparrow_forwardCan someone help mearrow_forward
- 3. Four identical small masses are connected in a flat perfect square. Rank the relative rotational inertias (IA, IB, IC) about the three axes of rotation shown. Axes A and B are in the plane of the square, and axis C is perpendicular to the plane, through mass m1. ΙΑ IB m2 m1 m3 Ic m4 (a) IAarrow_forwardConsider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardCan someone helparrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY