Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 22P
In the particle under constant acceleration model, we identify the variables and parameters vxi, vxf, ax, t, and xf − xi. Of the equations in the model. Equations 2.13–2.17, the first does not involve xf − xi, the second and third do not contain ax, the fourth omits vxf, and the last leaves out t. So, to complete the set, there should be an equation not involving vxi. Derive it from the others.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Suppose we are told that the acceleration a of a particle moving with uniform speed ν in a circle of radius r is proportional to some power of r, say rn, and some power of ν, say νm. Determine the values of n and m and write the simplest form of an equation for the acceleration.
As illustrated in the figure, a particle P moves on an x- y plane. In this motion, x( t) = 3 2 in meters and
a(y) = 4 m /s?. It is also known that the position and velocity component along the y axis both vanish.
Determine the speed as well as the x and y position of the particle at i = 3s. In your opinion, is the figure
correct? If not, explain why and sketch a correction.
Trajectory
60
a
50
40
30
P
20
10
50
100
150
200
250
A particle moves along the x-axis with position function
x(t) = At² + B²²³,
where 4 = 3 m s-² and B=ms-3 are constants. Find the instantaneous velocity vx and
the instantaneous acceleration ax of the particle at time t = 2 s. Give your answers by
entering the appropriate integer numbers in the two empty boxes below (you don't need
to concern yourself with significant figures in this question).
At time t=2s : Vx =
At time t=2s : ax =
ms-1.
ms-2.
You may use the following standard derivative:
dc4"
dt
nCtn - 1 where C and are any constants.
n
Chapter 2 Solutions
Physics for Scientists and Engineers
Ch. 2.1 - Which of the following choices best describes what...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.5 - Make a velocitytime graph for the car in Figure...Ch. 2.5 - If a car is traveling eastward and slowing down,...Ch. 2.6 - Which one of the following statements is true? (a)...Ch. 2.7 - In Figure 2.12, match each vxt graph on the top...Ch. 2.8 - Consider the following choices: (a) increases, (b)...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...
Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - A positiontime graph for a particle moving along...Ch. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - A glider of length moves through a stationary...Ch. 2 - Why is the following situation impossible?...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - In the particle under constant acceleration model,...Ch. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - You are observing the poles along the side of the...Ch. 2 - Why is the following situation impossible? Emily...Ch. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - The height of a helicopter above the ground is...Ch. 2 - A ball is thrown upward from the ground with an...Ch. 2 - A student throws a set of keys vertically upward...Ch. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - You have been hired by the prosecuting attorney as...Ch. 2 - A student drives a moped along a straight road as...Ch. 2 - Automotive engineers refer to the time rate of...Ch. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Why is the following situation impossible? A...Ch. 2 - Hannah tests her new sports car by racing with...Ch. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Lisa rushes down onto a subway platform to find...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - In a womens 100-m race, accelerating uniformly,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the vertical jump, an Kobe Bryant starts from a crouch and jumps upward to reach as high as possible. Even the best athletes spend little more than 1.00 s in the air (their "hang time"). Treat Kobe as a particle and let ymax be his maximum height above the floor. Note: this isn't the entire story since Kobe can twist and curl up in the air, but then we can no longer treat him as a particle. Hint: Find v0 to reach y_max in terms of g and y_max and recall the velocity at y_max is zero. Then find v1 to reach y_max/2 with the same kinematic equation. The time to reach y_max is obtained from v0=g (t), and the time to reach y_max/2 is given by v1-v0= -g(t1). Now, t1 is the time to reach y_max/2, and the quantity t-t1 is the time to go from y_max/2 to y_max. You want the ratio of (t-t1)/t1 Note from Asker: I am generally confused on how to manipulate the formulas, so if you could show every step that would be great, Thank You. Part A Part complete To explain why…arrow_forwardThe equation r(t) = ( sin t)i + ( cos t)j + (t) k is the position of a particle in space at time t. Find the particle's velocity and acceleration vectors. π Then write the particle's velocity at t= as a product of its speed and direction. The velocity vector is v(t) = (i+j+ k.arrow_forwardPlease answer b and carrow_forward
- A particle moves in one dimension according to the equation: x(t)= 2.0m + (5.0m/s)t - (6.2m/s2)t2. Determine x at t=2.0s, vx at t=0.2s, and ax at t=3.1s.arrow_forwardv(t) = 4t3 + 10t m/s. The initial position is r = 3 m. 3. A one dimensional problem. Assume v = Determine the position and acceleration at time t = 3sec.arrow_forwardIn the vertical jump, an Kobe Bryant starts from a crouch and jumps upward to reach as high as possible. Even the best athletes spend little more than 1.00 ss in the air (their "hang time"). Treat Kobe as a particle and let ymaxymax be his maximum height above the floor. Note: this isn't the entire story since Kobe can twist and curl up in the air, but then we can no longer treat him as a particle. Hint: Find v0 to reach y_max in terms of g and y_max and recall the velocity at y_max is zero. Then find v1 to reach y_max/2 with the same kinematic equation. The time to reach y_max is obtained from v0=g (t), and the time to reach y_max/2 is given by v1-v0= -g(t1). Now, t1 is the time to reach y_max/2, and the quantity t-t1 is the time to go from y_max/2 to y_max. You want the ratio of (t-t1)/t1 To explain why he seems to hang in the air, calculate the ratio of the time he is above ymax/2ymax/2 moving up to the time it takes him to go from the floor to that height. You may ignore…arrow_forward
- A point particle of mass m = 1.8 kg moves according to the position function: r(t) = xtai + ytbj + ztck, where t denotes time and x, y, z, a, b, and c are constants such that the exponents are positive integers and the position function has the dimension of length. Part (a) We can write the particle’s velocity function in the form v(t) = ntdi + otej + ptgk. Enter an expression for n in terms of x, y, z, a, b, and c. Part (b) The particle’s velocity function will have the form v(t) = ntdi + otej + ptgk. Enter an expression for d in terms of x, y, z, a, b, and c. Part (c) Here is a set of parameter values for the motion of the particle: m = 1.8 kg, x = 1.8 m/s0, y = 2.4 m/s1, z = 0.15 m/s2, a = 0, b = 1, c = 2. Calculate the x-component of the particle’s angular momentum, in units of kg˙m2/s, about the origin at time t = 1 s. Part (d) Use the same set of parameter values (m = 1.8 kg, x = 1.8 m/s0, y = 2.4 m/s1, z = 0.15 m/s2, a = 0, b = 1, c = 2) to calculate the y-component of…arrow_forwardA particle P is moving on the x-axis with constant deceleration 2.5 ms?. At time t = 0, the particle P passes through the origin 0, moving in the positive direction of x with speed 15 ms. Find a the time between the instant when P first passes through O and the instant when it returns to 0, b the total distance travelled by P during this time.arrow_forwardAt time t = 0 a particle at the origin of an xyz-coordinate system has a velocity vector of vo = i+ 5j – k. The acceleration function of the particle is a(t) = 32r²i + j+ (cos 21)k. Find the speed of the particle at time t = 1. Round your answer to two decimal places.arrow_forward
- The position of a particle in space at time tis: r(t) = (sec(t)) * i + (tan t) * j + 4/3 tk. Write the particle's velocity at time t = (pi / 6) as the product of its speed and direction.arrow_forwardA. Without finding T and N, write the acceleration of the motion a(t) to the position vector r(t) = (1)i + (t+)j+ (t-P) k in the form a(t) = a, T+ an N at the value of t 1.arrow_forwardIn the children's book Nuts to You, a young squirrel named Jed is snatched up by a hawk. While in the air Jed manages to go limp, slip through the hawk's talons and fall to the forest floor. The hawk travels horizontally at a speed of 4.86m/s . (You may neglect any effects of air resistance as you answer the following questions). One second after being released, what is the y-component of Jed's velocity?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY