Concept explainers
A glider of length 12.4 cm moves on an air track with constant acceleration (Fig P2.19). A time interval of 0.628 s elapses between the moment when its front end passes a fixed point Ⓐ along the track and the moment when its back end passes this point. Next, a time interval of 1.39 s elapses between the moment when the back end of the glider passes the point Ⓐ and the moment when the front end of the glider passes a second point Ⓑ farther down the track. After that, an additional 0.431 s elapses until the back end of the glider passes point Ⓑ. (a) Find the average speed of the glider as it passes point Ⓐ. (b) Find the acceleration of the glider. (c) Explain how you can compute the acceleration without knowing the distance between points Ⓐ and Ⓑ.
Trending nowThis is a popular solution!
Chapter 2 Solutions
Physics for Scientists and Engineers
Additional Science Textbook Solutions
Microbiology Fundamentals: A Clinical Approach
Fundamentals Of Thermodynamics
Introductory Chemistry (6th Edition)
Genetics: From Genes to Genomes
Fundamentals of Anatomy & Physiology (11th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- A cat walks in a straight line, which we shall call the x-axis with the positive direction to the right. As an observant physicist, you make measurement of this cat's motion and construct a graph of the feline's velocity as a function of time. What distance (in cm) does the cat move from t=0 to t=7.5s?arrow_forwardA typical sneeze expels material at a maximum speed of 58.6 m/s. Suppose the material begins inside the nose at rest, 2.00 cm from the nostrils. It has a constant acceleration for the first 0.250 cm and then moves at constant velocity for the remainder of the distance. What is the acceleration as the material moves the first 0.250 cm (0.250 m)?arrow_forwardEmily challenges her husband, David, to catch a $1 bill as follows. She holds the bill vertically as in Figure P2.69, with the center of the bill between David’s index finger and thumb. David must catch the bill after Emily releases it without moving his hand downward. If his reaction time is 0.2 s, will he succeed? Explain your reasoning. (This challenge is a good trick you might want to try with your friends.)arrow_forward
- A juggler throws a bowling pin straight up with an initial speed of 4.3 m/s from an initial height of 1.9 m. How much time elapses until the bowling pin returns to the same initial height?arrow_forwardA rocket, initially at rest on the ground, accelerates upward with a constant acceleration of 94.0 m/s2 until it reaches a speed of 1.50E2 m/s when the engines are cut off. After that, the rocket is in free-fall. What is the maximum height reached by the rocket?arrow_forwardI had a dream last night that I was chased by my teddy bear. In my dream, I was sleepwalking at a constant velocity of 60ft/sec. At exactly 4:00 am I noticed my teddy bear standing 1000 feet behind me. At that instant I began to accelerate at 10 ft/sec/sec and the teddy bear began to accerlate after me at 12 ft/sec/sec. At the moment the bear caught up to me, I woke from my dream in a cold sweat. To the nearest second, What time was this?arrow_forward
- An elevator 2.25 m high rises with a constant acceleration of 2.19 m / s2, and at the moment the velocity is 2.0 m / s, a screw is detached from the ceiling of the elevator. After how long does the screw hit the elevator floor?arrow_forwardA small block has constant acceleration as it slides down a frictionless incline. The block is released from rest at the top of the incline, and its speed after it has traveled 6.00 mm to the bottom of the incline is 3.80 m/sm/s. A). What is the speed of the block when it is 4.60 mm from the top of the incline? Express your answer with the appropriate units.arrow_forwardPlease help me solve this.arrow_forward
- A particle moves along the x-axis. Its coordinate in meters is given by x(t) = 12t – 3.0t2, where the time is in seconds. The particle is momentarily at rest at t = O 2.0 s O 3.0 s O 4.0 s 5.0 sarrow_forwardObjects in free fall on the earth have acceleration ay = -9.8 m/s2. On the moon, free-fall acceleration is approximately 1/6 of the acceleration on earth. This changes the scale of problems involving free fall. For instance, suppose you jump straight upward, leaving the ground with velocity νi and then steadily slowing until reaching zero velocity at your highest point. Because your initial velocity is determined mostly by the strength of your leg muscles, we can assume your initial velocity would be the same on the moon. But considering the final equation in Synthesis 2.1 we can see that, with a smaller free-fall acceleration, your maximum height would be greater. The following questions ask you to think about how certain athletic feats might be performed in this reduced-gravity environment. If an astronaut can jump straight up to a height of 0.50 m on earth, how high could he jump on the moon?A. 1.2 m B. 3.0 m C. 3.6 m D. 18 marrow_forwardObjects in free fall on the earth have acceleration ay = -9.8 m/s2. On the moon, free-fall acceleration is approximately 1/6 of the acceleration on earth. This changes the scale of problems involving free fall. For instance, suppose you jump straight upward, leaving the ground with velocity νi and then steadily slowing until reaching zero velocity at your highest point. Because your initial velocity is determined mostly by the strength of your leg muscles, we can assume your initial velocity would be the same on the moon. But considering the final equation in Synthesis 2.1 we can see that, with a smaller free-fall acceleration, your maximum height would be greater. The following questions ask you to think about how certain athletic feats might be performed in this reduced-gravity environment. On the earth, an astronaut can safely jump to the ground from a height of 1.0 m; her velocity when reaching the ground is slow enough to not cause injury. From what height could the astronaut…arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON