Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 25P
Why is the following situation impossible? Emily challenges David to catch a $1 bill as follows. She holds the bill vertically as shown in Figure P2.25, with the center of the bill between but not touching David’s index finger and thumb. Without warning, Emily releases the bill. David catches the bill without moving his hand downward. David’s reaction time is equal to the average human reaction time.
Figure P2.25
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Why is the following situation possible?
Emily challenges her friend David to catch a $1 bill as follows. She holds the bill vertically as shown in figure P2.29 with the center of the bill between but not touching David's index finger and thumb. Without warning, Emily releases the bill. David catches the bill without moving his hands downwards. David reaction time is equal to the average human reaction time.
Avg human reaction time is .2s.
Dollar bill is approx 15.5cm in length.
I need help explaining this. Thank you.
Emily challenges her husband, David, to catch a $1 bill
as follows. She holds the bill vertically as in Figure P2.67,
with the center of the bill
between David's index finger
and thumb. David must catch
the bill after Emily releases
it without moving his hand
downward. If his reaction
time is 0.2 s, will he succeed?
Explain your reasoning. (This
challenge is a good trick you
might want to try with your
friends.)
Figure P2.67
Emily challenges her husband, David, to catch a $1 bill as follows. She holds the bill vertically as in Figure P2.69, with the center of the bill between David’s index finger and thumb. David must catch the bill after Emily releases it without moving his hand downward. If his reaction time is 0.2 s, will he succeed? Explain your reasoning. (This challenge is a good trick you might want to try with your friends.)
Chapter 2 Solutions
Physics for Scientists and Engineers
Ch. 2.1 - Which of the following choices best describes what...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.5 - Make a velocitytime graph for the car in Figure...Ch. 2.5 - If a car is traveling eastward and slowing down,...Ch. 2.6 - Which one of the following statements is true? (a)...Ch. 2.7 - In Figure 2.12, match each vxt graph on the top...Ch. 2.8 - Consider the following choices: (a) increases, (b)...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A particle moves according to the equation x =...Ch. 2 - The position of a pinewood derby car was observed...
Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - A positiontime graph for a particle moving along...Ch. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - A glider of length moves through a stationary...Ch. 2 - Why is the following situation impossible?...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - In the particle under constant acceleration model,...Ch. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - You are observing the poles along the side of the...Ch. 2 - Why is the following situation impossible? Emily...Ch. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - The height of a helicopter above the ground is...Ch. 2 - A ball is thrown upward from the ground with an...Ch. 2 - A student throws a set of keys vertically upward...Ch. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - You have been hired by the prosecuting attorney as...Ch. 2 - A student drives a moped along a straight road as...Ch. 2 - Automotive engineers refer to the time rate of...Ch. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Why is the following situation impossible? A...Ch. 2 - Hannah tests her new sports car by racing with...Ch. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Lisa rushes down onto a subway platform to find...Ch. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - In a womens 100-m race, accelerating uniformly,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. Rub your hands together vigorously. What happens? Discuss the energy transfers and transformations that take...
College Physics: A Strategic Approach (3rd Edition)
Practice Problem ATTEMPT
Write the rate expressions for each of the following reactions:
(a)
(b)
(c)
Chemistry
True or false? Some trails are considered vestigial because they existed long ago.
Biological Science (6th Edition)
An electric motor has an effective resistance of 32.0 and an inductive reactance of 45.0 when working under l...
Fundamentals of Physics Extended
An obese 55-year-old woman consults her physician about minor chest pains during exercise. Explain the physicia...
Biology: Life on Earth with Physiology (11th Edition)
More than one choice may apply. Using the terms listed below, fill in the blank with the proper term. anterior ...
Essentials of Human Anatomy & Physiology (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why is the following situation impossible? Emily challenges David to catch a $1 bill as follows. She holds the bill vertically as shown, with the centerof the bill between but not touching David’s index finger and thumb. Withoutwarning, Emily releases the bill. David catches the bill without moving his hand downward. David’s reaction time is equal to the average human reaction time.arrow_forwardBob proposed Alice to a marriage on the very top of a 30m building. Alice said yes. Bob then put the ring on Alice’s finger. Alice was very happy. She threw her hands up in the air. Unfortunately, the ring slipped from her finger and fell down due to gravity.Bob set up a camera to record the moment. Thus, he look at the footage and determine that the ring was going out of Alice’s hand with speed of vi =10m/s at an angle of θ=30 . The dimension of the building is given below. (a) If the ring were to land on the terrace, how long would it take?(b) If the ring were to land on the Lawn, how long would it take?(c) Where should Bob search for the ring? Terrace or lawn? An answer with no support reasoning will recieve no credit.arrow_forwardHere’s an interesting challenge you can give to a friend. Hold a $1 (or larger!) bill by an upper corner. Have a friend prepare to pinch a lower corner, putting her fingers near but not touching the bill. Tell her to try to catch the bill when you drop it by simply closing her fingers. This seems like it should be easy, but it’s not. After she sees that you have released the bill, it will take her about 0.25 s to react and close her fingers—which is not fast enough to catch the bill. How much time does it take for the bill to fall beyond her grasp? The length of a bill is 16 cm.arrow_forward
- Two people each kick identical balls at the same angle. Person A kicks it at three times the speed of person B. How many times higher does A's ball go than B's? 0 3 O 0.33 O 4arrow_forwardMy sable-colored Siberian husky, Samba, loves to run after huge objects (for instance, tree branches). I decide to chunk a 6 foot long stick for her to run after and bring back to me. I throw the stick at 2.42 ft/s in 1.5 s. In feet and to two decimal places, how far away did the stick landarrow_forward35. A person going for a walk follows the path shown in T Figure P3.35. The total trip consists of four straight-line paths. At the end of the walk, what is the person's resultant displacement measured from the starting point? Start 100 m 300 m End 200 m 30.0 150 m 60.0° Figure P3.35arrow_forward
- Emily challenges her husband, David, to catch a 1$ bill as follows. She holds the bill vertically as in the figure below, with the center of the bill between David’s index finger and thumb. David must catch the bill after Emily releases it without moving his hand downward. If his reaction time is 0.2? will he succeed? Explain your reasoning.arrow_forwardTwo children are playing on a 151-m-tall bridge. One child drops a rock (initial velocity zero) at t = 0. The other waits 1.1 s and then throws a rock downward with an initial speed Vo. If the two rocks hit the ground at the same time, what is vo? m/sarrow_forwardTwo ants pass each other one is moving along the negative x axis and one is moving at 45 degrees to the x axis. Ant 1 goes 0.032 and ant 2 goes 0.070 m/s. Ant going .070 m/s begins to accelerate as soon as the two pass each other. The acceleration is .001 m/s2. How far apart will the two ants be after 2 seconds?arrow_forward
- A thief is trying to escape from a parking garage after completing a robbery, and the thief’s car is speeding (v = 12 m/s) toward the door of the parking garage (Fig. P2.60). When the thief is L = 30 m from the door, a police officer flips a switch to close the garage door. The door starts at a height of 2.0 m and moves downward at 0.20 m/s. If the thief’s car is 1.4 m tall, will the thief escape?arrow_forwardA thief is trying to escape from a parking garage after completing a robbery, and the thief's car is speeding (v = 12 m/s) toward the door of the parking garage (Fig. P2.60). When the thief is L= 30 m from the door, a police officer flips a switch to close the garage door. The door starts at a height of 2.0 m and moves downward at 0.20 m/s. If the thief's car is 1.4 m tall, will the thief escape? Garage door L Figure P2.60arrow_forwardWe are standing on the top of a 1040 feet tall building and launch a small object upward. The object's height, measured in feet, after t seconds is h(t) = 16t? + 128t + 1040. A) What is the object initial velocity? ft/second B) What is the highest point that the object reaches? feetarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY