Concept explainers
a. Which compounds are Bronsted-Lowry acids:
b. Which compounds are Bronsted-Lowry bases:
c. Classify each compound as an acid, a base, or both:
(a)
Interpretation: Among the given compounds, Bronsted-Lowry acids are to be identified.
Concept introduction: Bronsted-Lowry acids are those species which donate proton. They are also known as proton donor. The net charge on Bronsted-Lowry acids can be zero or negative or positive.
Answer to Problem 2.1P
The Bronsted-Lowry acid is
Explanation of Solution
All Bronsted-Lowry acids donate proton.
Hydrogen bromide contain hydrogen atom. Hence, it is a Bronsted-Lowry acid.
Ammonia contains a lone pair of electrons which can be easily donated to form a new bond. Hence, it is a Bronsted-Lowry base.
No hydrogen is present in the
In the given set of compounds, Bronsted-Lowry acid is
(b)
Interpretation: Among the given compounds, Bronsted-Lowry bases are to be identified.
Concept introduction: Bronsted-Lowry bases are those species which can accept a proton. The Base must contain a lone pair or pi bond that could be easily donated to an acid to form a new bond. Bronsted-Lowry base are proton acceptor. The net charge on Bronsted-Lowry base can be zero and negative.
Answer to Problem 2.1P
The Bronsted-Lowry acids are
Explanation of Solution
All Bronsted-lowry bases contain lone pair of electrons or pi bond. In
Figure 1
The molecule
Figure 2
There is neither a pi bond nor a negative charge present in
In the given set of compounds, Bronsted-Lowry acids are
(c)
Interpretation: Among the given compounds, Bronsted-lowry bases are to be identified.
Concept introduction: Bronsted-Lowry bases are those species which can accept a proton. The Base must contain a lone pair or pi bond that could be easily donated to an acid to form a new bond. Bronsted-Lowry base are proton acceptor. The net charge on Bronsted-Lowry base can be zero and negative.
Answer to Problem 2.1P
The Bronsted-Lowry acids are
Explanation of Solution
All Bronsted-Lowry bases contain lone pairs of electrons or pi bond. Bronsted-Lowry acids contain proton.
Ethanol contains hydrogen atom and lone pairs on oxygen atom. Hence, it is a Bronsted-Lowry base as well as a Bronsted-Lowry acid.
Figure 3
Propane contains only hydrogen atoms. Hence, it is a Bronsted-Lowry acid.
Figure 4
Figure 5
The Bronsted-Lowry acids are
Want to see more full solutions like this?
Chapter 2 Solutions
Organic Chemistry
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward(a) The following synthesis of the molecule shown in the circle has a major problem. What is this problem? (2 pts) 1) HBr (no peroxides) 2) H- NaNH2 Br 3) NaNH, 4) CH3Br 5) H2, Pd (b) Starting with the molecule shown below and any other materials with two carbons or less, write out an alternate synthesis of the circled molecule. More than one step is needed. Indicate the reagent(s) and the major product in all the steps in your synthesis. (5 pts) 2024 Fall Term (1) Organic Chemistry 1 (Lec) CHEM 22204 02[6386] (Hunter College) (c) Using the same starting material as in part (b) and any other materials win two carpons or less, write out syntheses of the circled molecules shown below. More than one step is needed in each case. Indicate the reagent(s) and the major product in all the steps in your synthesis. You may use reactions and products from your synthesis in part (b). (5 pts)arrow_forward
- alt ons for Free Response Questions FRQ 1: 0/5 To spectrophotometrically determine the mass percent of cobalt in an ore containing cobalt and some inert materials, solutions with known [Co?) are prepared and absorbance of each of the solutions is measured at the wavelength of optimum absorbance. The data are used to create a calibration plot, shown below. 0.90- 0.80- 0.70 0.60 0.50 0.40- 0.30 0.20- 0.10- 0.00- 0.005 0.010 Concentration (M) 0.015 A 0.630 g sample of the ore is completely dissolved in concentrated HNO3(aq). The mixture is diluted with water to a final volume of 50.00 ml. Assume that all the cobalt in the ore sample is converted to Co2+(aq). a. What is the [Co2] in the solution if the absorbance of a sample of the solution is 0.74? 13 ✗ b. Calculate the number of moles of Co2+(aq) in the 50.00 mL solution. 0.008 mols Coarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardCloso-boranes and arachno-boranes are structures that exhibit B-B, B-H-B, and B-H bonds. Correct?arrow_forward
- Indicate why boron hydrides cannot form large linear or planar structures.arrow_forwardNido-boranes are structures with the molecular formula BnHn+4 that exhibit B-B, B-H-B and B-H bonds. Correct?arrow_forward8:07 AM Wed Dec 18 Final Exam 2024 copy Home Insert Draw Page Layout Formulas Data Review AA 田 General A G fx Alexis Cozort ☑ ⚫ 61% A B D E F H K M N P R S T U 3+ 10 125 mM that yielded peak heights of Aa = 9 1-(a)A sample solution was examined under XRF to quantify the analyte Ce³+. Find the response factor F, when standardized concentration of analyte [Ce³+]A = concentration of internal standard S i.e. [In³*]s = 151 mM was spiked with standardized 1600 and As = 3015 respectively? 11 12 (i)Define F, F = Aa As [A] [S] + X 13 (*Define with variables) 4000 14 15 (ii)Calculate F, F = numeral (You will use the F value in part 1-(b) below) As 16 (*Calculate with numerals) 17 18 1-(b)To determine the unknown conc of analyte [Ce³+], a volume of 15 mL of internal standard S having a concentration [In³+]s = 0.264 M 19 20 was added to 45 mL of unknown, and the mixture was diluted to 100 mL in a volumetric flask. XRF analysis yielded a spectrum, Figure-1, where peak heights A and As are…arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning