Concept explainers
(a)
Interpretation:
The more stable base between
Concept introduction:
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
If an acid lose one proton, then the formed species is a conjugated base. Weak base forms stronger conjugated acid.
Size affecting the stability of the base: In order to determine the strength of the base, the size of an atom overrides electronegativity. As the atoms get larger and the stability of the anions increases even though the electronegativity of the atoms decreases. Stability of the bases increases going down the group. Stable bases are weak bases.
(b)
Interpretation:
The more stable base between
Concept introduction:
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
If an acid lose one proton, then the formed species is a conjugated base. Weak base forms stronger conjugated acid.
Size affecting the stability of the base: In order to determine the strength of the base, the size of an atom overrides electronegativity. As the atoms get larger and the stability of the anions increases even though the electronegativity of the atoms decreases. Stability of the bases increases going down the group. Stable bases are weak bases.
(c)
Interpretation:
The more stable base between
Concept introduction:
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
If an acid lose one proton, then the formed species is a conjugated base. Weak base forms stronger conjugated acid.
Electronegativity: The chemical behavior of an atom where it attracts the shared electron pair to itself. Down the group, electronegativity decreases as the number of energy levels increases.
Electronegativity depends on the acidity of a species. Order of electronegativity of hybridization is
Effect of electron delocalization: if a base has localized electrons, then the negative charge that results when the base’s conjugate acid loses a proton will belong to one atom.
A base with delocalized electron is more stable than a similar base with localized electrons.
(d)
Interpretation:
The more stable base between
Concept introduction:
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
If an acid lose one proton, then the formed species is a conjugated base. Weak base forms stronger conjugated acid.
Electronegativity: The chemical behavior of an atom where it attracts the shared electron pair to itself. Down the group, electronegativity decreases as the number of energy levels increases.
Effect of Hybridization: Electronegativity depends on the acidity of a species. Order of electronegativity of hybridization is
(e)
Interpretation:
The more stable base between
Concept introduction:
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
If an acid lose one proton, then the formed species is a conjugated base. Weak base forms stronger conjugated acid.
Electronegativity: The chemical behavior of an atom where it attracts the shared electron pair to itself. Down the group, electronegativity decreases as the number of energy levels increases.
Effect of Inductive electron withdrawal on Acidity: Replacing a Hydrogen with an electronegative substituent pulls bonding electrons toward itself; increases the strength of the acid.
(f)
Interpretation:
The more stable base between
Concept introduction:
If a base receives one proton, then the formed species is a conjugate acid whereas an acid lose one proton, then the formed species is a conjugated base.
If an acid lose one proton, then the formed species is a conjugated base. Weak base forms stronger conjugated acid.
Electronegativity: The chemical behavior of an atom where it attracts the shared electron pair to itself. Down the group, electronegativity decreases as the number of energy levels increases.
Effect of Inductive electron withdrawal on Acidity: Replacing a Hydrogen with an electronegative substituent pulls bonding electrons toward itself; increases the strength of the acid.

Want to see the full answer?
Check out a sample textbook solution
Chapter 2 Solutions
Essential Organic Chemistry, Global Edition
- For each reaction below, decide if the first stable organic product that forms in solution will create a new C - C bond, and check the appropriate box. Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below. Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first stable product you expect to form in solution. NH2 tu ? ? OH Will the first product that forms in this reaction create a new CC bond? Yes No Will the first product that forms in this reaction create a new CC bond? Yes No C $ ©arrow_forwardAs the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule with a new C-C bond as its major product: 1. MgCl ? 2. H₂O* If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. This reaction will not make a product with a new CC bond. G marrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M NH4 Ksp Hg2Br2 = 5.6×10-23.arrow_forward
- give example for the following(by equation) a. Converting a water insoluble compound to a soluble one. b. Diazotization reaction form diazonium salt c. coupling reaction of a diazonium salt d. indacator properties of MO e. Diazotization ( diazonium salt of bromobenzene)arrow_forward2-Propanone and ethyllithium are mixed and subsequently acid hydrolyzed. Draw and name the structures of the products.arrow_forward(Methanesulfinyl)methane is reacted with NaH, and then with acetophenone. Draw and name the structures of the products.arrow_forward
- 3-Oxo-butanenitrile and (E)-2-butenal are mixed with sodium ethoxide in ethanol. Draw and name the structures of the products.arrow_forwardWhat is the reason of the following(use equations if possible) a.) In MO preperation through diazotization: Addition of sodium nitrite in acidfied solution in order to form diazonium salt b.) in MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at low pH c.) In MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at pH 4.5 d.) Avoiding not cooling down the reaction mixture when preparing the diazonium salt e.) Cbvcarrow_forwardA 0.552-g sample of an unknown acid was dissolved in water to a total volume of 20.0 mL. This sample was titrated with 0.1103 M KOH. The equivalence point occurred at 29.42 mL base added. The pH of the solution at 10.0 mL base added was 3.72. Determine the molar mass of the acid. Determine the Ka of the acid.arrow_forward
- As the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will its major product: 2,0° with a new C-C bond as If this reaction will work, draw the major organic product or products you would expect in the drawing aree below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and desh bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new C-C bond, just check the box under the drawing area and leave it blank.arrow_forwardwrite the mechanism of the nucleophilic acyl substitution reaction, please give an examplearrow_forwardThe compound in the figure is reacted with 10 n-butyllihium, 2° propanone, and 3º H2O. Draw and name the products obtained. SiMe3arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co



