CHEMISTRY >CUSTOM<
14th Edition
ISBN: 9781259137815
Author: Julia Burdge
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19.7, Problem 1PPA
Interpretation Introduction
Interpretation:
The concentration of copper (I) ion in the saturated solution of copper (I) chloride and
Concept introduction:
In a concentration cell, the electrodes vary in their concentrations. It is a kind of galvanic cell. In such type of cell, the reduction potential can be determined with the help of Nernst equation. It is given as follows:
Here,
is the electrode cell potential,
is the gas constant,
is the temperature,
is the Faraday constant, and
is the reaction quotient.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question:
Calculate the (a) electrical energy, (b) G and (c) K of the two galvanic cells
in the following information below at standard-state condition
Analyze and answer the following.
1. A galvanic cell consists of Mg anode in a 1.0 M Mg(NO3)2 and Al cathode in a
1.OM Al(NO3)3 solution with NaCl as the electrolyte in the salt bridge.
2. A galvanic cell is made of Tin anode in 1.0 M SnCl2 and iron cathode in a 1.0 M
FeC12 solution with NANO3 as the electrolyte in the salt bridge.
The free energy change for the following reaction at 25 °C, when [Ag+] = 1.12 M and [Co²+]
M, is -221 kJ:
2Ag+ (1.12 M) + Co(s)—2Ag(s) + Co2+ (7.66x10-3 M) AG = -221 kJ
What is the cell potential for the reaction as written under these conditions?
Answer:
V
Would this reaction be spontaneous in the forward or the reverse direction? reverse
=
7.66x10-3
Q10
Chapter 19 Solutions
CHEMISTRY >CUSTOM<
Ch. 19.1 - Prob. 1PPACh. 19.1 - Prob. 1PPBCh. 19.1 - Prob. 1PPCCh. 19.1 - Which of the following equations does not...Ch. 19.1 - MuO 4 and C 2 O react in basic solution to form...Ch. 19.2 - Practice ProblemATTEMPT Determine the overall cell...Ch. 19.2 - Practice Problem BUILD
A galvanic cell with V can...Ch. 19.2 - Prob. 1PPCCh. 19.3 - Prob. 1PPACh. 19.3 - Practice ProblemBUILD Would it be safer to store a...
Ch. 19.3 - Practice ProblemCONCEPTUALIZE A piece of nickel...Ch. 19.3 - Calculate E cell o at 25°C for a galvanic cell...Ch. 19.3 - 19.3.2 Calculate at for a galvanic cell made of a...Ch. 19.3 - 19.3.3 What redox reaction, if any. will occur at ...Ch. 19.3 - What redox reaction, if any. will occur at 25°C...Ch. 19.4 - Practice Problem ATTEMPT
Calculate for the...Ch. 19.4 - Practice ProblemBUILD The hydrazinium ion, N 2 H 5...Ch. 19.4 - Practice Problem CONCEPTUALIZE
Which of the...Ch. 19.4 - Calculate K at 25°C for the following reaction: Fe...Ch. 19.4 - 19.4.2 Calculate for the following reaction:
Ch. 19.5 - Practice ProblemATTEMPT Calculate the equilibrium...Ch. 19.5 - Practice Problem BUILD
Like equilibrium constants....Ch. 19.5 - Practice ProblemCONCEPTUALIZE Which of the...Ch. 19.5 - Calculate E at 25°C for a galvanic cell based on...Ch. 19.5 - 19.5.2 Calculate the cell potential at of a...Ch. 19.5 - 19.5.3 Calculate for a galvanic cell based on the...Ch. 19.5 - 19.5.4 Which of these would cause an increase in...Ch. 19.5 - 19.5.5 Determine the initial value of under the...Ch. 19.5 - Which of the following would cause a decrease in...Ch. 19.6 - Practice ProblemATTEMPT Will the following...Ch. 19.6 - Prob. 1PPBCh. 19.6 - Prob. 1PPCCh. 19.7 - Prob. 1PPACh. 19.7 - Prob. 1PPBCh. 19.7 - Practice Problem CONCEPTUALIZE
When the circuit in...Ch. 19.7 - 19.7.1 In the electrolysis of molten , a current...Ch. 19.7 - 19.7.2 How long will a current of 0.995 A need to...Ch. 19.7 - The diagram shows an electrolytic cell being...Ch. 19.8 - Practice Problem ATTEMPT
A constant current of...Ch. 19.8 - Practice Problem BUILD
A constant current is...Ch. 19.8 - Practice ProblemCONCEPTUALIZE The diagram on the...Ch. 19 - How much copper metal can be produced by...Ch. 19 - What mass of cadmium will be produced by...Ch. 19 - Of the following aqueous solutions, identify the...Ch. 19 - 19.4
When a current of 5.22 A is applied over 3.50...Ch. 19 - Balance the following redox equations by the...Ch. 19 - Balance the following redox equations by the...Ch. 19 - Define the following terms: anode, cathode, cell...Ch. 19 - 19.4 Describe the basic features of a galvanic...Ch. 19 - 19.5 What is the function of a salt bridge? What...Ch. 19 - What is a cell diagram? Write the cell diagram for...Ch. 19 - What is the difference between the half-reactions...Ch. 19 - Discuss the spontaneity of an electrochemical...Ch. 19 - After operating a Daniell cell (see Figure 19.1)...Ch. 19 - 19.10 Calculate the standard emf of a cell that...Ch. 19 - Calculate the standard emf of a cell that uses...Ch. 19 - Predict whether Fe 3+ can oxidize I - to I 2 under...Ch. 19 - 19.13 Which of the following reagents can oxidize ...Ch. 19 - 19.14 Consider the following...Ch. 19 - Predict whether the following reactions would...Ch. 19 - 19.16 Which species in each pair is a better...Ch. 19 - Which species in each pair is a better reducing...Ch. 19 - 19.18 Use the information in Table 2.1, and...Ch. 19 - Write the equations relating Δ G ° and K to the...Ch. 19 - Prob. 20QPCh. 19 - What is the equilibrium constant for the following...Ch. 19 - 19.22 The equilibrium constant for the...Ch. 19 - Use the standard reduction potentials to find the...Ch. 19 - Calculate △ G ° and K c for the following...Ch. 19 - Under standard-state conditions, what spontaneous...Ch. 19 - Given that E ° = 0.52 V for the reduction Cu + ( a...Ch. 19 - Write the Nernst equation, and explain all the...Ch. 19 - Write the Nernst equation for the following...Ch. 19 - What is the potential of a cell made up of Zn/Zn...Ch. 19 - 19.30 Calculate for the following cell...Ch. 19 - 19.31 Calculate the standard potential of the cell...Ch. 19 - 19.32 What is the emf of a cell consisting of a ...Ch. 19 - 19.33 Referring to the arrangement in Figure 19.1,...Ch. 19 - Calculate the emf of the following concentration...Ch. 19 - 19.35 What is a battery? Describe several types of...Ch. 19 - 19.36 Explain the differences between a primary...Ch. 19 - Discuss the advantages and disadvantages of fuel...Ch. 19 - 19.38 The hydrogen-oxygen fuel cell is described...Ch. 19 - Calculate the standard emf of the propane fuel...Ch. 19 - 19.40 What is the difference between a galvanic...Ch. 19 - 19.41 What is Faraday’s contribution to...Ch. 19 - Prob. 42QPCh. 19 - 19.43 The half-reaction at an electrode...Ch. 19 - Consider the electrolysis of molten barium...Ch. 19 - Prob. 45QPCh. 19 - 19.46 If the cost of electricity to produce...Ch. 19 - 19.47 One of the half-reactions for the...Ch. 19 - 19.48 How many faradays of electricity are...Ch. 19 - Calculate the amounts of Cu and Br 2 produced in...Ch. 19 - 19.50 In the electrolysis of an aqueous solution....Ch. 19 - 19.51 A steady current was passed through molten ...Ch. 19 - 19.52 A constant electric current flows for 3.75 h...Ch. 19 - What is the hourly production rate of chlorine gas...Ch. 19 - Chromium plating is applied by electrolysis to...Ch. 19 - 19.55 The passage of a current of 0.750 A for 25.0...Ch. 19 - A quantity of 0.300 g of copper was deposited from...Ch. 19 - 19.57 In a certain electrolysis experiment. 1.44 g...Ch. 19 - One of the half-reactions for the electrolysis of...Ch. 19 - Prob. 59QPCh. 19 - 'Galvanized iron舡 is steel sheet that has been...Ch. 19 - 19.61 Tarnished silver contains . The tarnish can...Ch. 19 - Prob. 62QPCh. 19 - For each of the following redox reactions, (i)...Ch. 19 - The oxidation of 25.0 mL of a solution containing...Ch. 19 - Prob. 65APCh. 19 - Prob. 66APCh. 19 - 19.67 The concentration of a hydrogen peroxide...Ch. 19 - Equations 18.10 and 19.3 to calculate the emf...Ch. 19 - Based on the following standard reduction...Ch. 19 - Complete the following table. State whether the...Ch. 19 - 19.71 From the following information, calculate...Ch. 19 - Consider a galvanic cell composed of the SHE and a...Ch. 19 - A galvanic cell consists of a silver electrode in...Ch. 19 - 19.74 Calculate the equilibrium constant for the...Ch. 19 - 19.75 Calculate the emf of the following...Ch. 19 - 19.76 The cathode reaction in the Leclanché cell...Ch. 19 - Prob. 77APCh. 19 - Prob. 78APCh. 19 - 19.79 A piece of magnesium metal weighing 1.56 g...Ch. 19 - Prob. 80APCh. 19 - Prob. 81APCh. 19 - In a certain electrolysis experiment involving Al...Ch. 19 - 19.83 Consider the oxidation of ammonia:
(a)...Ch. 19 - When an aqueous solution containing gold(III) salt...Ch. 19 - Prob. 85APCh. 19 - Prob. 86APCh. 19 - 19.87 Given that:
calculate and K for the...Ch. 19 - Fluorine ( F 2 ) is obtained by the electrolysis...Ch. 19 - A 300-mL solution of NaCl was electrolyzed for...Ch. 19 - A piece of magnesium ribbon and a copper wire are...Ch. 19 - An aqueous solution of a platinum salt is...Ch. 19 - Consider a galvanic cell consisting of a magnesium...Ch. 19 - Use the data in Table 19.1 to show that the...Ch. 19 - Consider the Daniell cell in Figure 19.1. When...Ch. 19 - 19.95 Explain why most useful galvanic cells give...Ch. 19 - Prob. 96APCh. 19 - 19.97 Zinc is an amphoteric metal; that is, it...Ch. 19 - Use the data in Table 19.1 to determine whether or...Ch. 19 - The magnitudes (but not the signs) of the standard...Ch. 19 - A galvanic cell is constructed as fellows. One...Ch. 19 - Given the standard reduction potential for A u 3+...Ch. 19 - Prob. 102APCh. 19 - Prob. 103APCh. 19 - A galvanic cell using Mg/Mg 2+ and Cu/Cu 2+...Ch. 19 - Prob. 105APCh. 19 - Prob. 106APCh. 19 - Prob. 107APCh. 19 - Prob. 108APCh. 19 - Prob. 109APCh. 19 - 19.110 Explain why chlorine gas can be prepared by...Ch. 19 - Prob. 111APCh. 19 - Prob. 112APCh. 19 - Prob. 113APCh. 19 - 19.114 To remove the tarnish on a silver spoon, a...Ch. 19 - 19.115 A construction company is installing an...Ch. 19 - Prob. 116APCh. 19 - Lead storage batteries are rated by ampere-hours,...Ch. 19 - Prob. 118APCh. 19 - Prob. 119APCh. 19 - Prob. 120APCh. 19 - Prob. 121APCh. 19 - Prob. 122APCh. 19 - Prob. 123APCh. 19 - Prob. 124APCh. 19 - Prob. 125APCh. 19 - 19.126 The zinc-air battery shows much promise for...Ch. 19 - 19.127 A current of 6,00 A passes through an...Ch. 19 - 19.128 solution was electrolyzed. As a result,...Ch. 19 - Prob. 129APCh. 19 - A galvanic cell is constructed by immersing a...Ch. 19 - A galvanic cell is constructed by immersing a...Ch. 19 - A galvanic cell is constructed by immersing a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider a concentration cell that has both electrodes made of some metal M. Solution A in one compartment of the cell contains 1.0 M M2+. Solution B in the other cell compartment has a volume of 1.00 L. At the beginning of the experiment 0.0100 mole of M(NO3)2 and 0.0100 mole of Na2SO4 are dissolved in solution B (ignore volume changes), where the reaction M2+(aq)+SO42(aq)MSO4(s) occurs. For this reaction equilibrium is rapidly established, whereupon the cell potential is found to be 0.44 V at 25C. Assume that the process M2++2eM has a standard reduction potential of 0.31 V and that no other redox process occurs in the cell. Calculate the value of Ksp for MSO4(s) at 25C.arrow_forwardAnswer all partsarrow_forward41. Calculate the standard cell potential for the galvanic cell, which has the overall balanced equation (use data on reference page): Zn(s) + 2Ag+ (aq) → Zn²+ (aq) + 2Ag(s) (A) 0.04 V (B) 1.56 V (C) 0.84 V (D) -1.56 V (E) -2.36 Varrow_forward
- What is the calculated value of the cell potential at 298 K for an electrochemical cell with the following reaction, when the Pb2+ concentration is 3.86 x 10-4 M and the Zn2+ concentration is 1.12 M? Ecell Pb2+ (aq) + Zn(s) → Pb(s) + Zn2+ (aq) V The cell reaction as written above is for the concentrations given. Submit Answer Retry Entire Group 9 more group attempts remainingarrow_forwardWhat is the calculated value of the cell potential at 298 K for an electrochemical cell with the following reaction, when the Ag+ concentration is 6.17 x 10-4 M and the Mn²+ concentration is 1.04 M ? Ecell 2+ 2Ag+ (aq) + Mn(s) → 2Ag(s) + Mn²+ (aq) V The cell reaction as written above is Submit Answer Retry Entire Group spontaneous nonspontaneous for the concentrations given. y attempts remainingarrow_forwardWhen the Cu2+ concentration is 1.04 M, the observed cell potential at 298K for an electrochemical cell with the following reaction is 2.806V. What is the Mg-+ concentration? 2+ Cu²*(aq) + Mg(s)→ Cu(s) + Mg“(aq) Answer: Marrow_forward
- When the Hg2+ concentration is 6.20x10-4 M, the observed cell potential at 298K for an electrochemical cell with the following reaction is 1.500v. What is the Cr3+ concentration? 3H92+(aq) + 2Cr(s)3Hg(1) + 2Cr3+(aq) Answer: Marrow_forwardWhen the Ag+ concentration is 1.09 M, the observed cell potential at 298K for an electrochemical cell with the following reaction is 1.603V. What is the Cr3+ concentration? 3Ag+(aq) + Cr(s)3Ag(s) + Cr3+(aq) Answer: Marrow_forwardWhen the Cu2+ concentration is 1.00 M, the observed cell potential at 298K for an electrochemical cell with the following reaction is 2.799V. What is the Mg²+ concentration? Cu2*(aq) + Mg(s)- →Cu(s) + Mg²*(aq) Answer: Marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning