CHEMISTRY >CUSTOM<
14th Edition
ISBN: 9781259137815
Author: Julia Burdge
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 37QP
Discuss the advantages and disadvantages of fuel cells over conventional power plants in producing electricity.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
CHEMISTRY >CUSTOM<
Ch. 19.1 - Prob. 1PPACh. 19.1 - Prob. 1PPBCh. 19.1 - Prob. 1PPCCh. 19.1 - Which of the following equations does not...Ch. 19.1 - MuO 4 and C 2 O react in basic solution to form...Ch. 19.2 - Practice ProblemATTEMPT Determine the overall cell...Ch. 19.2 - Practice Problem BUILD
A galvanic cell with V can...Ch. 19.2 - Prob. 1PPCCh. 19.3 - Prob. 1PPACh. 19.3 - Practice ProblemBUILD Would it be safer to store a...
Ch. 19.3 - Practice ProblemCONCEPTUALIZE A piece of nickel...Ch. 19.3 - Calculate E cell o at 25°C for a galvanic cell...Ch. 19.3 - 19.3.2 Calculate at for a galvanic cell made of a...Ch. 19.3 - 19.3.3 What redox reaction, if any. will occur at ...Ch. 19.3 - What redox reaction, if any. will occur at 25°C...Ch. 19.4 - Practice Problem ATTEMPT
Calculate for the...Ch. 19.4 - Practice ProblemBUILD The hydrazinium ion, N 2 H 5...Ch. 19.4 - Practice Problem CONCEPTUALIZE
Which of the...Ch. 19.4 - Calculate K at 25°C for the following reaction: Fe...Ch. 19.4 - 19.4.2 Calculate for the following reaction:
Ch. 19.5 - Practice ProblemATTEMPT Calculate the equilibrium...Ch. 19.5 - Practice Problem BUILD
Like equilibrium constants....Ch. 19.5 - Practice ProblemCONCEPTUALIZE Which of the...Ch. 19.5 - Calculate E at 25°C for a galvanic cell based on...Ch. 19.5 - 19.5.2 Calculate the cell potential at of a...Ch. 19.5 - 19.5.3 Calculate for a galvanic cell based on the...Ch. 19.5 - 19.5.4 Which of these would cause an increase in...Ch. 19.5 - 19.5.5 Determine the initial value of under the...Ch. 19.5 - Which of the following would cause a decrease in...Ch. 19.6 - Practice ProblemATTEMPT Will the following...Ch. 19.6 - Prob. 1PPBCh. 19.6 - Prob. 1PPCCh. 19.7 - Prob. 1PPACh. 19.7 - Prob. 1PPBCh. 19.7 - Practice Problem CONCEPTUALIZE
When the circuit in...Ch. 19.7 - 19.7.1 In the electrolysis of molten , a current...Ch. 19.7 - 19.7.2 How long will a current of 0.995 A need to...Ch. 19.7 - The diagram shows an electrolytic cell being...Ch. 19.8 - Practice Problem ATTEMPT
A constant current of...Ch. 19.8 - Practice Problem BUILD
A constant current is...Ch. 19.8 - Practice ProblemCONCEPTUALIZE The diagram on the...Ch. 19 - How much copper metal can be produced by...Ch. 19 - What mass of cadmium will be produced by...Ch. 19 - Of the following aqueous solutions, identify the...Ch. 19 - 19.4
When a current of 5.22 A is applied over 3.50...Ch. 19 - Balance the following redox equations by the...Ch. 19 - Balance the following redox equations by the...Ch. 19 - Define the following terms: anode, cathode, cell...Ch. 19 - 19.4 Describe the basic features of a galvanic...Ch. 19 - 19.5 What is the function of a salt bridge? What...Ch. 19 - What is a cell diagram? Write the cell diagram for...Ch. 19 - What is the difference between the half-reactions...Ch. 19 - Discuss the spontaneity of an electrochemical...Ch. 19 - After operating a Daniell cell (see Figure 19.1)...Ch. 19 - 19.10 Calculate the standard emf of a cell that...Ch. 19 - Calculate the standard emf of a cell that uses...Ch. 19 - Predict whether Fe 3+ can oxidize I - to I 2 under...Ch. 19 - 19.13 Which of the following reagents can oxidize ...Ch. 19 - 19.14 Consider the following...Ch. 19 - Predict whether the following reactions would...Ch. 19 - 19.16 Which species in each pair is a better...Ch. 19 - Which species in each pair is a better reducing...Ch. 19 - 19.18 Use the information in Table 2.1, and...Ch. 19 - Write the equations relating Δ G ° and K to the...Ch. 19 - Prob. 20QPCh. 19 - What is the equilibrium constant for the following...Ch. 19 - 19.22 The equilibrium constant for the...Ch. 19 - Use the standard reduction potentials to find the...Ch. 19 - Calculate △ G ° and K c for the following...Ch. 19 - Under standard-state conditions, what spontaneous...Ch. 19 - Given that E ° = 0.52 V for the reduction Cu + ( a...Ch. 19 - Write the Nernst equation, and explain all the...Ch. 19 - Write the Nernst equation for the following...Ch. 19 - What is the potential of a cell made up of Zn/Zn...Ch. 19 - 19.30 Calculate for the following cell...Ch. 19 - 19.31 Calculate the standard potential of the cell...Ch. 19 - 19.32 What is the emf of a cell consisting of a ...Ch. 19 - 19.33 Referring to the arrangement in Figure 19.1,...Ch. 19 - Calculate the emf of the following concentration...Ch. 19 - 19.35 What is a battery? Describe several types of...Ch. 19 - 19.36 Explain the differences between a primary...Ch. 19 - Discuss the advantages and disadvantages of fuel...Ch. 19 - 19.38 The hydrogen-oxygen fuel cell is described...Ch. 19 - Calculate the standard emf of the propane fuel...Ch. 19 - 19.40 What is the difference between a galvanic...Ch. 19 - 19.41 What is Faraday’s contribution to...Ch. 19 - Prob. 42QPCh. 19 - 19.43 The half-reaction at an electrode...Ch. 19 - Consider the electrolysis of molten barium...Ch. 19 - Prob. 45QPCh. 19 - 19.46 If the cost of electricity to produce...Ch. 19 - 19.47 One of the half-reactions for the...Ch. 19 - 19.48 How many faradays of electricity are...Ch. 19 - Calculate the amounts of Cu and Br 2 produced in...Ch. 19 - 19.50 In the electrolysis of an aqueous solution....Ch. 19 - 19.51 A steady current was passed through molten ...Ch. 19 - 19.52 A constant electric current flows for 3.75 h...Ch. 19 - What is the hourly production rate of chlorine gas...Ch. 19 - Chromium plating is applied by electrolysis to...Ch. 19 - 19.55 The passage of a current of 0.750 A for 25.0...Ch. 19 - A quantity of 0.300 g of copper was deposited from...Ch. 19 - 19.57 In a certain electrolysis experiment. 1.44 g...Ch. 19 - One of the half-reactions for the electrolysis of...Ch. 19 - Prob. 59QPCh. 19 - 'Galvanized iron舡 is steel sheet that has been...Ch. 19 - 19.61 Tarnished silver contains . The tarnish can...Ch. 19 - Prob. 62QPCh. 19 - For each of the following redox reactions, (i)...Ch. 19 - The oxidation of 25.0 mL of a solution containing...Ch. 19 - Prob. 65APCh. 19 - Prob. 66APCh. 19 - 19.67 The concentration of a hydrogen peroxide...Ch. 19 - Equations 18.10 and 19.3 to calculate the emf...Ch. 19 - Based on the following standard reduction...Ch. 19 - Complete the following table. State whether the...Ch. 19 - 19.71 From the following information, calculate...Ch. 19 - Consider a galvanic cell composed of the SHE and a...Ch. 19 - A galvanic cell consists of a silver electrode in...Ch. 19 - 19.74 Calculate the equilibrium constant for the...Ch. 19 - 19.75 Calculate the emf of the following...Ch. 19 - 19.76 The cathode reaction in the Leclanché cell...Ch. 19 - Prob. 77APCh. 19 - Prob. 78APCh. 19 - 19.79 A piece of magnesium metal weighing 1.56 g...Ch. 19 - Prob. 80APCh. 19 - Prob. 81APCh. 19 - In a certain electrolysis experiment involving Al...Ch. 19 - 19.83 Consider the oxidation of ammonia:
(a)...Ch. 19 - When an aqueous solution containing gold(III) salt...Ch. 19 - Prob. 85APCh. 19 - Prob. 86APCh. 19 - 19.87 Given that:
calculate and K for the...Ch. 19 - Fluorine ( F 2 ) is obtained by the electrolysis...Ch. 19 - A 300-mL solution of NaCl was electrolyzed for...Ch. 19 - A piece of magnesium ribbon and a copper wire are...Ch. 19 - An aqueous solution of a platinum salt is...Ch. 19 - Consider a galvanic cell consisting of a magnesium...Ch. 19 - Use the data in Table 19.1 to show that the...Ch. 19 - Consider the Daniell cell in Figure 19.1. When...Ch. 19 - 19.95 Explain why most useful galvanic cells give...Ch. 19 - Prob. 96APCh. 19 - 19.97 Zinc is an amphoteric metal; that is, it...Ch. 19 - Use the data in Table 19.1 to determine whether or...Ch. 19 - The magnitudes (but not the signs) of the standard...Ch. 19 - A galvanic cell is constructed as fellows. One...Ch. 19 - Given the standard reduction potential for A u 3+...Ch. 19 - Prob. 102APCh. 19 - Prob. 103APCh. 19 - A galvanic cell using Mg/Mg 2+ and Cu/Cu 2+...Ch. 19 - Prob. 105APCh. 19 - Prob. 106APCh. 19 - Prob. 107APCh. 19 - Prob. 108APCh. 19 - Prob. 109APCh. 19 - 19.110 Explain why chlorine gas can be prepared by...Ch. 19 - Prob. 111APCh. 19 - Prob. 112APCh. 19 - Prob. 113APCh. 19 - 19.114 To remove the tarnish on a silver spoon, a...Ch. 19 - 19.115 A construction company is installing an...Ch. 19 - Prob. 116APCh. 19 - Lead storage batteries are rated by ampere-hours,...Ch. 19 - Prob. 118APCh. 19 - Prob. 119APCh. 19 - Prob. 120APCh. 19 - Prob. 121APCh. 19 - Prob. 122APCh. 19 - Prob. 123APCh. 19 - Prob. 124APCh. 19 - Prob. 125APCh. 19 - 19.126 The zinc-air battery shows much promise for...Ch. 19 - 19.127 A current of 6,00 A passes through an...Ch. 19 - 19.128 solution was electrolyzed. As a result,...Ch. 19 - Prob. 129APCh. 19 - A galvanic cell is constructed by immersing a...Ch. 19 - A galvanic cell is constructed by immersing a...Ch. 19 - A galvanic cell is constructed by immersing a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Give a thermodynamic argument for why it is more efficient to generate electricity from methane oxidation in a fuel cell rather than from methane oxidation in a conventional combustion power plant.arrow_forwardAn aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forwardThe free energy change for a reaction, rG, is the maximum energy that can be extracted from the process as work, whereas rH is the total chemical potential energy change. The efficiency of a fuel cell is the ratio of these two quantities. Efficiency=rGrH100 Consider the hydrogen-oxygen fuel cell, where the net reaction is H2(g)+12O2(g)H2O(l) (a) Calculate the efficiency of the fuel cell under standard conditions. (b) Calculate the efficiency of the fuel cell if the product is water vapor instead of liquid water. (c) Does the efficiency depend on the state of the reaction product? Why or why not?arrow_forward
- Identify each statement as true or false. Rewrite each false statement to make it true. (a) Oxidation always occurs at the anode of an electrochemical cell. (b) The anode of a discharging voltaic cell is the site ofreduction and is negative. (c) Standard-state conditions for electrochemical cells are aconcentration of 1.0 M for dissolved species and a pressure of 1 bar for gases. (d) The potential of a voltaic cell does not change withtemperature. (e) All product-favored oxidation-reduction reactions have astandard cell potential Ecell, with a negative sign.arrow_forwardHow does a geothermal power plant generate electricity? What are the advantages and disadvantages of geothermal power?arrow_forwardZinc is produced by electrolytic refining. The electrolytic process, which is similar to that for copper, can be represented by the two half-reactions Zn(impure,s)Zn2++2eZn2++2eZn(pure,s) For this process, a voltage of 3.0 V is used. How many kilowatt hours are needed to produce one metric ton of pure zinc?arrow_forward
- A voltaic cell is constructed in which one half-cell consists of a silver wire in an aqueous solution of AgNO3.The other half cell consists of an inert platinum wire in an aqueous solution containing Fe2+(aq) and Fe3+(aq). (a) Calculate the cell potential, assuming standard conditions. (b) Write the net ionic equation for the reaction occurring in the cell. (c) Which electrode is the anode and which is the cathode? (d) If [Ag+] is 0.10 M, and [Fe2+] and [Fe3+] are both 1.0 M, what is the cell potential? Is the net cell reaction still that used in part (a)? If not, what is the net reaction under the new conditions?arrow_forwardThe mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forwardConsider the electrolysis of water in the presence of very dilute H2SO4. What species is produced at the anode? Atthe cathode? What are the relative amounts of the speciesproduced at the two electrodes?arrow_forward
- A lead storage battery delivers a current of 6.00 A for one hour and 22 minutes at a voltage of 12.0 V. (a) How many grams of lead are converted to PbSO4? (b) How much electrical energy is produced in kilowatt hours?arrow_forwardA fuel cell designed to react grain alcohol with oxygen has the following net reaction: C2H5OH(l)+3O2(g)2CO2(g)+3H2O(l) The maximum work that 1 mole of alcohol can do is 1.32 103 kJ. What is the theoretical maximum voltage this cell can achieve at 25C?arrow_forwardUse chemical equations to explain how the molten carbonate fuel cell (MCFC) works. What are its advantages and its disadvantages?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY