VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
12th Edition
ISBN: 9781260916942
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19.1, Problem 19.31P
If h = 700 mm and d = 500 mm and each spring has a constant k = 600 N/m, determine the mass m for which the period of small oscillations is (a) 0.50 s, (b) infinite. Neglect the mass of the rod and assume that each spring can act in both tension and compression.
Fig. P19.31
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 1300-kg sports car has a center of gravity G located a distance h above a line connecting the front and rear axles. The car is suspended from cables that are attached to the front and rear axles as shown. Knowing that the periods of oscillation are 4.04 s when L = 4 m and 3.54 s when L = 3 m, determine h and the centroidal radius of gyration.
1. A body of uniform cross-sectional area A and mass density of p floats in a liquid of
density po and at equilibrium displaces a volume V. Show that the period of small
oscillations about the equilibrium position is given by
T = 2T V / gA
where g is the gravitational field strength.
A machine of mass 75 kg is mounted on springs and is fitted with a dashpot to damp out vibrations. There are three springs each of stiffness 10 N/mm and it is found that the amplitude of vibration diminishes from 38.4 mm to 6.4 mm in two complete oscillations. Assuming that the damping force varies as the velocity, determine : 1. the resistance of the dash-pot at unit velocity ; 2. the ratio of the frequency of the damped vibration to the frequency of the undamped vibration ; and 3. the periodic time of the
damped vibration.
Chapter 19 Solutions
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
Ch. 19.1 - A particle moves in simple harmonic motion....Ch. 19.1 - A particle moves in simple harmonic motion....Ch. 19.1 - Prob. 19.3PCh. 19.1 - Prob. 19.4PCh. 19.1 - Prob. 19.5PCh. 19.1 - Prob. 19.6PCh. 19.1 - Prob. 19.7PCh. 19.1 - A simple pendulum consisting of a bob attached to...Ch. 19.1 - Prob. 19.9PCh. 19.1 - Prob. 19.10P
Ch. 19.1 - Prob. 19.11PCh. 19.1 - Prob. 19.12PCh. 19.1 - Prob. 19.13PCh. 19.1 - Prob. 19.14PCh. 19.1 - A 5-kg collar C is released from rest in the...Ch. 19.1 - Prob. 19.16PCh. 19.1 - Prob. 19.17PCh. 19.1 - An 11-lb block is attached to the lower end of a...Ch. 19.1 - Block A has a mass m and is supported by the...Ch. 19.1 - A 13.6-kg block is supported by the spring...Ch. 19.1 - Prob. 19.21PCh. 19.1 - 19.21 and 19.22A 50-kg block is supported by the...Ch. 19.1 - Prob. 19.23PCh. 19.1 - The period of vibration of the system shown is...Ch. 19.1 - Prob. 19.25PCh. 19.1 - Prob. 19.26PCh. 19.1 - From mechanics of materials, it is known that for...Ch. 19.1 - From mechanics of materials it is known that when...Ch. 19.1 - Prob. 19.29PCh. 19.1 - Prob. 19.30PCh. 19.1 - If h = 700 mm and d = 500 mm and each spring has a...Ch. 19.1 - Prob. 19.32PCh. 19.1 - Prob. 19.33PCh. 19.1 - Prob. 19.34PCh. 19.1 - Prob. 19.35PCh. 19.1 - Prob. 19.36PCh. 19.2 - The 9-kg uniform rod AB is attached to springs at...Ch. 19.2 - Prob. 19.38PCh. 19.2 - Prob. 19.39PCh. 19.2 - Prob. 19.40PCh. 19.2 - A 15-lb slender rod AB is riveted to a 12-lb...Ch. 19.2 - A 20-lb uniform cylinder can roll without sliding...Ch. 19.2 - A square plate of mass m is held by eight springs,...Ch. 19.2 - Prob. 19.44PCh. 19.2 - Prob. 19.45PCh. 19.2 - A three-blade wind turbine used for research is...Ch. 19.2 - A connecting rod is supported by a knife-edge at...Ch. 19.2 - A semicircular hole is cut in a uniform square...Ch. 19.2 - A uniform disk of radius r = 250 mm is attached at...Ch. 19.2 - A small collar of mass 1 kg is rigidly attached to...Ch. 19.2 - Prob. 19.51PCh. 19.2 - Prob. 19.52PCh. 19.2 - Prob. 19.53PCh. 19.2 - Prob. 19.54PCh. 19.2 - The 8-kg uniform bar AB is hinged at C and is...Ch. 19.2 - Prob. 19.56PCh. 19.2 - Prob. 19.57PCh. 19.2 - Prob. 19.58PCh. 19.2 - Prob. 19.59PCh. 19.2 - Prob. 19.60PCh. 19.2 - Two uniform rods, each of weight W = 24 lb and...Ch. 19.2 - A homogeneous rod of mass per unit length equal to...Ch. 19.2 - Prob. 19.63PCh. 19.2 - Prob. 19.64PCh. 19.2 - A 60-kg uniform circular plate is welded to two...Ch. 19.2 - Prob. 19.66PCh. 19.2 - Prob. 19.67PCh. 19.2 - The centroidal radius of gyration ky of an...Ch. 19.3 - Two blocks each have a mass 1.5 kg and are...Ch. 19.3 - Prob. 19.70PCh. 19.3 - Prob. 19.71PCh. 19.3 - Prob. 19.72PCh. 19.3 - Prob. 19.73PCh. 19.3 - Prob. 19.74PCh. 19.3 - Prob. 19.75PCh. 19.3 - Prob. 19.76PCh. 19.3 - Prob. 19.77PCh. 19.3 - Blade AB of the experimental wind-turbine...Ch. 19.3 - A 15-lb uniform cylinder can roll without sliding...Ch. 19.3 - Prob. 19.80PCh. 19.3 - Prob. 19.81PCh. 19.3 - Prob. 19.82PCh. 19.3 - Prob. 19.83PCh. 19.3 - Prob. 19.84PCh. 19.3 - A homogeneous rod of weight W and length 2l is...Ch. 19.3 - A 10-lb uniform rod CD is welded at C to a shaft...Ch. 19.3 - Prob. 19.87PCh. 19.3 - Prob. 19.88PCh. 19.3 - Prob. 19.89PCh. 19.3 - Prob. 19.90PCh. 19.3 - Prob. 19.91PCh. 19.3 - Prob. 19.92PCh. 19.3 - Prob. 19.93PCh. 19.3 - A uniform rod of length L is supported by a...Ch. 19.3 - Prob. 19.95PCh. 19.3 - Three collars each have a mass m and are connected...Ch. 19.3 - Prob. 19.97PCh. 19.3 - As a submerged body moves through a fluid, the...Ch. 19.4 - A 4-kg collar can slide on a frictionless...Ch. 19.4 - Prob. 19.100PCh. 19.4 - A collar with mass m that slides on a frictionless...Ch. 19.4 - Prob. 19.102PCh. 19.4 - The 1.2-kg bob of a simple pendulum of length l =...Ch. 19.4 - Prob. 19.104PCh. 19.4 - A precision experiment sits on an optical table...Ch. 19.4 - Prob. 19.106PCh. 19.4 - Prob. 19.107PCh. 19.4 - The crude-oil pumping rig shown is driven at 20...Ch. 19.4 - Prob. 19.109PCh. 19.4 - Prob. 19.110PCh. 19.4 - Prob. 19.111PCh. 19.4 - Rod AB is rigidly attached to the frame of a motor...Ch. 19.4 - Prob. 19.113PCh. 19.4 - Prob. 19.114PCh. 19.4 - A motor of weight 100 lb is supported by four...Ch. 19.4 - Prob. 19.116PCh. 19.4 - Prob. 19.117PCh. 19.4 - Prob. 19.118PCh. 19.4 - Prob. 19.119PCh. 19.4 - One of the tail rotor blades of a helicopter has...Ch. 19.4 - Prob. 19.121PCh. 19.4 - Prob. 19.122PCh. 19.4 - Prob. 19.123PCh. 19.4 - Prob. 19.124PCh. 19.4 - A 60-lb disk is attached with an eccentricity e =...Ch. 19.4 - A small trailer and its load have a total mass of...Ch. 19.5 - Prob. 19.127PCh. 19.5 - Prob. 19.128PCh. 19.5 - Prob. 19.129PCh. 19.5 - Prob. 19.130PCh. 19.5 - Prob. 19.131PCh. 19.5 - Prob. 19.132PCh. 19.5 - Prob. 19.133PCh. 19.5 - Prob. 19.134PCh. 19.5 - Prob. 19.135PCh. 19.5 - Prob. 19.136PCh. 19.5 - Prob. 19.137PCh. 19.5 - Prob. 19.138PCh. 19.5 - A machine element weighing 500 lb is supported by...Ch. 19.5 - Prob. 19.140PCh. 19.5 - Prob. 19.141PCh. 19.5 - Prob. 19.142PCh. 19.5 - Prob. 19.143PCh. 19.5 - A 36-lb motor is bolted to a light horizontal beam...Ch. 19.5 - One of the tail rotor blades of a helicopter has...Ch. 19.5 - Prob. 19.146PCh. 19.5 - Prob. 19.147PCh. 19.5 - Prob. 19.148PCh. 19.5 - Prob. 19.149PCh. 19.5 - Prob. 19.150PCh. 19.5 - The suspension of an automobile can be...Ch. 19.5 - Prob. 19.152PCh. 19.5 - Prob. 19.153PCh. 19.5 - Prob. 19.154PCh. 19.5 - 19.155 and 19.156 Draw the electrical analog of...Ch. 19.5 - Prob. 19.156PCh. 19.5 - 19.157 and 19.158Write the differential equations...Ch. 19.5 - 19.157 and 19.158Write the differential equations...Ch. 19 - An automobile wheel-and-tire assembly of total...Ch. 19 - Prob. 19.160RPCh. 19 - Disks A and B weigh 30 lb and 12 lb, respectively,...Ch. 19 - A small trailer and its load have a total mass of...Ch. 19 - A 0.8-lb ball is connected to a paddle by means of...Ch. 19 - Prob. 19.164RPCh. 19 - A 4-lb uniform rod is supported by a pin at O and...Ch. 19 - Prob. 19.166RPCh. 19 - Prob. 19.167RPCh. 19 - A small ball of mass m attached at the midpoint of...Ch. 19 - Prob. 19.169RPCh. 19 - If either a simple or a compound pendulum is used...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- As shown in the Fig. 3, the CM of a cylinder of mass m and radius R is connected to the top of hoop of mass m by a spring. The spring constant is assumed to be known and it is denoted by k. At a given moment the system is slightly compressed and then suddenly released. After the release, both rigid objects roll without slipping. Determine the angular frequency of the resulting oscillation. It is assumed that the spring remains horizontal throughout the motion. Figure 3: Coupled Oscillatorarrow_forwardA slender 10-kg bar AB with a length of l = 0.6 m is connected to two collars of negligible weight. Collar A is attached to a spring with a constant of k = 1.5 kN/m and can slide on a horizontal rod, while collar B can slide freely on a vertical rod. Knowing that the system is in equilibrium when bar AB is vertical and that collar A is given a small displacement and released, determine the period of the resulting vibrations.arrow_forward1. Derive the expression for the equivalent spring constant that relates the applied force F to the resulting displacement x of the system shown. Assume the displacement of the link to be small. A.k c.k D. 24k k, = k B. k В. k2 = 2k kz = 3k Farrow_forward
- A 6-kg uniform cylinder can roll without sliding on a horizontal surface and is attached by a pin at point C to the 4-kg horizontal bar AB. The bar is attached to two springs, each having a constant of k = 4.2 kN/m, as shown. The bar is moved 12 mm to the right of the equilibrium position and released. Determine the period of vibration of the system. (Round the final answer to three decimal places.) The period of vibration of the system is ___s.arrow_forward4.21. Assuming small angular oscillations, derive the differential equation of motion of the system shown in Fig. P4.6 where the rod is assumed to be uniform and slender. The mass and length of the rod are assumed to be m and 1, respectively. Problems 175 y = Y, sin w,t Fig. P4.6arrow_forwardA 15-lb uniform cylinder can roll without sliding on an incline and is attached to a spring AB as shown. If the center of the cylinder is moved 0.4 in. down the incline and released, determine (a) the period of vibration, (b) the maximum velocity of the center of the cylinder.arrow_forward
- Q4. An air-conditioning chiller unit weighing 5.0kg is to be supported by four air springs. Design the air springs such that the natural frequency of vibration of the unit liesbetween 5 rad/s and 10 rad/s. Q5. A heavy machine weighing 9.81kN is being lowered vertically down by a winch at a uniform velocity of 2 m/s. The steel cable supporting the machine has a diameter of 0.01 m. The winch is suddenly stopped when the steel cable's length is 20 m. Find the period and amplitude of the ensuing vibration of the machine when Young's Modulus of steel cable is 2.07*10¹1 N/m².arrow_forwardTwo uniform rods, each of weight W = 1.2 lb and length l = 8 in., are welded together to form the assembly shown. Knowing that the constant of each spring is k = 0.6 lb/in. and that end A is given a small displacement and released, determine the frequency of the resulting motion.arrow_forwardThe barrel of a field gun weighs 1500 lb and is returned into firing position after recoil by a recuperator of constant c=1100 1b.s/ft Determine (a) the constant k that should be used for the recuperator to return the barrel into firing position in the shortest possible time without any oscillation, (b) the time needed for the barrel to move back two-thirds of the way from its maximum-recoil position to its firing position.arrow_forward
- Problem 5.118 L2 02 The simple pendulum shown oscillates in the vertical plane (the plane of the figure) as the pendulum cord is being steadily retracted through the opening at O with a constant speed v. Consider the oscillations of the pendulum between positions O and ®, where 8, and 0, are the maximum swing angles of the pendulum at O and O, respectively. Let L, and L, denote the lengths of the cord at 0 and ®, respectively, and let m denote the L1 mass of the pendulum bob. Neglecting all forces except gravity and the tension in the cord, determine the angular impulse relative to O provided to the pendulum bob in going from 0 to 2. Figure P5.118arrow_forwardProblem 2 A railroad car of masse 20000 kg travelling at a velocity v=10 m/s is stopped at the end of the track by a spring-damper system. If the stiffness of the spring is k=40 N/mm and the damping constant c=20 Ns/mm, determine a) the maximum displacement of the car after engaging the springs and damper and b) the time taken to reach the maximum displacement.arrow_forwardA 2-kg block is supported by a spring with a constant of k= 128 N/m and a dashpot with a coefficient of viscous damping of c=0.6 N.s/m. The block is in equilibrium when it is struck from below by a hammer that imparts to the block an upward velocity of 0.4 m/s. Determine (a) the logarithmic decrement,(b) the maximum upward displacement of the block from equilibrium after two cycles.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Undamped Free Vibration of SDOF (1/2) - Structural Dynamics; Author: structurefree;https://www.youtube.com/watch?v=BkgzEdDlU78;License: Standard Youtube License