Concept explainers
(a)
The time
(a)

Answer to Problem 19.16P
The time
Explanation of Solution
Given Information:
The cord length
At rest the angle
The distance (d) is 0.6 m.
Assuming the value of acceleration due to gravity (g) is
Calculation:
Calculate natural circular frequency for path
Substitute
The time period of oscillations corresponding to the natural circular frequency
Calculate the time period
Substitute
Calculate the length
Substitute 0.6 m for d.
Calculate the natural circular frequency
Substitute
The time period of oscillations corresponding to the natural circular frequency
Calculate the time period
Substitute
Calculate the time period to return to A using the relation:
Substitute 1.09876 s for
Therefore, the time
(b)
The amplitude
(b)

Answer to Problem 19.16P
The amplitude
Explanation of Solution
Given Information:
The cord length
At rest the angle
The distance (d) is 0.6 m.
Assume the acceleration due to gravity (g) is
Calculation:
For the path between the points A and B:
Consider point A:
The displacement at A
Consider point B:
Express the derivative of the displacement at B
Substitute
Express the velocity
Substitute Equation (1) for the value of
For the path between the points B and C:
Consider point C:
The displacement at C
Consider point B:
Express the derivative of the displacement at B:
Substitute
Express the velocity at B:
Substitute Equation (3) for the value of
Equate Equations (2) and (4).
Calculate the amplitude
Substitute 1.2 m for
Therefore, the amplitude
Want to see more full solutions like this?
Chapter 19 Solutions
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
- reaction at a is 1.6 wL (pos) handwritten solutions only please. correct answers upvotedarrow_forward1 8 4 Add numbers so that the sum of any row or column equals .30 Use only these numbers: .1.2.3.4.5.6.10.11.12.12.13.14.14arrow_forwardUppgift 2 (9p) I77777 20 kN 10 kN/m 4 [m] 2 2 Bestäm tvärkrafts- och momentdiagram för balken i figuren ovan. Extrempunkter ska anges med både läge och värde i diagrammen.arrow_forward
- **Problem 8-45.** The man has a mass of 60 kg and the crate has a mass of 100 kg. If the coefficient of static friction between his shoes and the ground is \( \mu_s = 0.4 \) and between the crate and the ground is \( \mu_c = 0.3 \), determine if the man is able to move the crate using the rope-and-pulley system shown. **Diagram Explanation:** The diagram illustrates a scenario where a man is attempting to pull a crate using a rope-and-pulley system. The setup is as follows: - **Crate (C):** Positioned on the ground with a rope attached. - **Rope:** Connects the crate to a pulley system and extends to the man. - **Pulley on Tree:** The rope runs over a pulley mounted on a tree which redirects the rope. - **Angles:** - The rope between the crate and tree forms a \(30^\circ\) angle with the horizontal. - The rope between the tree and the man makes a \(45^\circ\) angle with the horizontal. - **Man (A):** Pulling on the rope with the intention of moving the crate. This arrangement tests the…arrow_forwardplease solve this problems follow what the question are asking to do please show me step by steparrow_forwardplease first write the line action find the forces and them solve the problem step by steparrow_forward
- please solve this problem what the problem are asking to solve please explain step by step and give me the correct answerarrow_forwardplease help me to solve this problem step by steparrow_forwardplease help me to solve this problem and determine the stress for each point i like to be explained step by step with the correct answerarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





