Concept explainers
Rod AB is rigidly attached to the frame of a motor running at a constant speed. When a collar of mass m is placed on the spring, it is observed to vibrate with an amplitude of 15 mm. When two collars, each of mass m, are placed on the spring, the amplitude is observed to be 18 mm. What amplitude of vibration should be expected when three collars, each of mass m, are placed on the spring? (Obtain two answers.)
Fig. P19.112
Find the amplitude of vibration
Answer to Problem 19.112P
The amplitude of vibration
Explanation of Solution
Given information:
The amplitude of the one collar
The amplitude of the two collars
Calculation:
The expression for the natural frequency
Here,
The expression for the amplitude of forced vibration
Here,
Consider only one collar is placed.
Calculate the natural frequency when only one collar is placed using the relation:
Here,
Substitute
Here,
Substitute 15 mm for
Consider two collars are placed.
Find the natural frequency:
Substitute 2m for m in equation (1).
Here,
Substitute
Multiply both sides by
Substitute
Here,
Substitute
Consider three collars are placed.
Find the natural frequency:
Substitute 3m for m in equation (1).
Here,
Substitute
Multiply both sides by
Substitute
Here,
Substitute
The amplitude given in equation (8), can be in-phase with or out-of-phase with the periodic force.
In-phase motion:
Substitute 18 mm for
Divide equation (13) by equation (4).
Substitute
Substitute 12.855 mm for
Out-of-phase motion:
Substitute -18 mm for
Divide equation (14) by equation (4).
Substitute 0.647 for
Substitute 5.295 mm for
Therefore, the amplitude of vibration
Want to see more full solutions like this?
Chapter 19 Solutions
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
- Given answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1arrow_forward(b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
- Q10) Body A weighs 600 lb contact with smooth surfaces at D and E. Determine the tension in the cord and the forces acting on C on member BD, also calculate the reaction at B and F. Cable 6' 3' wwwarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forwardQ3: Find the resultant of the force system.arrow_forward
- Question 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forward(L=6847 mm, q = 5331 N/mm, M = 1408549 N.mm, and El = 8.6 x 1014 N. mm²) X A ΕΙ B L Y Marrow_forwardCalculate the maximum shear stress Tmax at the selected element within the wall (Fig. Q3) if T = 26.7 KN.m, P = 23.6 MPa, t = 2.2 mm, R = 2 m. The following choices are provided in units of MPa and rounded to three decimal places. Select one: ○ 1.2681.818 O 2. 25745.455 O 3. 17163.636 O 4. 10727.273 ○ 5.5363.636arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY