Interpretation: The structure of three salts formed needs to be determined if 0.27 g of octahedral complex of Cr reacts with strong dehydrating agent and lost mass of 0.036 g. Reaction of 270 mg of second salt with same dehydrating agent show mass loss of 18 mg. The 3rd salt did not lose any mass while treating with dehydrating agent.
Given:
Concept Introduction:
Crystal field theory is the theory given to explain the bonding in the coordination complexes. As ligand approaches towards the metal ion, the d-orbital of metal ion divide according to the energy of metal ion. On the basis of energy and degeneracy, the d-orbital can be classified as
In octahedral complex, the
Answer to Problem 84AE
Explanation of Solution
Given information:
Addition of excess of aqueous silver nitrate to 100.0 mL portion of 0.100 M solution of each salt forms silver chloride,
- 1st solution= 1430 mg AgCl
- 2nd solution = 2870 mg AgCl
- 3rd solution = 4300 mg AgCl
Two salts are green and one is violet here.
Compound 1:
Calculate moles of water of hydration:
With 2 moles of water; the formula must be
Mass of AgCl = 1430 mg
Check the mass of Cl in
Calculate moles of water of hydration:
With 1 moles of water; the formula must be
Mass of AgCl = 2870 mg
Check the mass of Cl in
Compound 3:
Moles of water of hydration is 0 as no water lose is there. Thus the formula must be
Mass of AgCl = 4300 mg
Check the mass of Cl in
Hence the structure of complexes should be:
Thus,
Want to see more full solutions like this?
Chapter 19 Solutions
Chemical Principles
- The emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forwardSteps and explanation pleasearrow_forwardSteps and explanation to undertand concepts.arrow_forward
- Nonearrow_forward7. Draw a curved arrow mechanism for the following reaction. HO cat. HCI OH in dioxane with 4A molecular sievesarrow_forwardTry: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forward
- Nonearrow_forward16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning