The E o value for the given reactions has to be determined and has to decide whether each is product favoured at equilibrium and also has to check whether decreasing p H makes the reaction less thermodynamically product-favoured at equilibrium. Concept introduction: Electrochemical cells: Therese are chemical energy is converted into electrical energy. In all electrochemical cells, oxidation occurs at anode and reduction occurs at cathode. An anode is indicated by negative sign and cathode is indicated by the positive sign. Electrons flow in the external circuit from the anode to the cathode. In the electrochemical cells two half cells are connected with salt bridge. It allows the cations and anions to move between the two half cells. Under certain conditions a cell potential is measured it is called as standard potential (E cell o ) . Standard potential (E cell o ) can be calculated by the following formula. E cell o =E cathode o -E anode o The E cell o value is positive, the reaction is predicted to be product favoured at equilibrium. The E cell o value is negative, the reaction is predicted to be reactant favoured at equilibrium.
The E o value for the given reactions has to be determined and has to decide whether each is product favoured at equilibrium and also has to check whether decreasing p H makes the reaction less thermodynamically product-favoured at equilibrium. Concept introduction: Electrochemical cells: Therese are chemical energy is converted into electrical energy. In all electrochemical cells, oxidation occurs at anode and reduction occurs at cathode. An anode is indicated by negative sign and cathode is indicated by the positive sign. Electrons flow in the external circuit from the anode to the cathode. In the electrochemical cells two half cells are connected with salt bridge. It allows the cations and anions to move between the two half cells. Under certain conditions a cell potential is measured it is called as standard potential (E cell o ) . Standard potential (E cell o ) can be calculated by the following formula. E cell o =E cathode o -E anode o The E cell o value is positive, the reaction is predicted to be product favoured at equilibrium. The E cell o value is negative, the reaction is predicted to be reactant favoured at equilibrium.
Solution Summary: The author explains how the value of the o for the given reactions has to be determined and checked whether decreasing pH makes the reaction less thermodynamically product-favoured at equilibrium.
Science that deals with the amount of energy transferred from one equilibrium state to another equilibrium state.
Chapter 19, Problem 56PS
Interpretation Introduction
Interpretation:
The Eo value for the given reactions has to be determined and has to decide whether each is product favoured at equilibrium and also has to check whether decreasing pH makes the reaction less thermodynamically product-favoured at equilibrium.
Concept introduction:
Electrochemical cells:
Therese are chemical energy is converted into electrical energy.
In all electrochemical cells, oxidation occurs at anode and reduction occurs at cathode.
An anode is indicated by negative sign and cathode is indicated by the positive sign.
Electrons flow in the external circuit from the anode to the cathode.
In the electrochemical cells two half cells are connected with salt bridge. It allows the cations and anions to move between the two half cells.
Under certain conditions a cell potential is measured it is called as standard potential (Ecello).
Standard potential (Ecello) can be calculated by the following formula.
Ecello=Ecathodeo-Eanodeo
The Ecello value is positive, the reaction is predicted to be product favoured at equilibrium.
The Ecello value is negative, the reaction is predicted to be reactant favoured at equilibrium.
Can you please help mne with this problem. Im a visual person, so can you redraw it, potentislly color code and then as well explain it. I know im given CO2 use that to explain to me, as well as maybe give me a second example just to clarify even more with drawings (visuals) and explanations.
Part 1. Aqueous 0.010M AgNO 3 is slowly added to a 50-ml solution containing both carbonate [co32-] = 0.105 M
and sulfate [soy] = 0.164 M anions. Given the ksp of Ag2CO3 and Ag₂ soy below. Answer the ff:
Ag₂ CO3 = 2 Ag+ caq) + co} (aq)
ksp = 8.10 × 10-12
Ag₂SO4 = 2Ag+(aq) + soy² (aq) ksp = 1.20 × 10-5
a) which salt will precipitate first?
(b)
What % of the first anion precipitated will remain in the solution.
by the time the second anion starts to precipitate?
(c) What is the effect of low pH (more acidic) condition on the separate of the carbonate and
sulfate anions via silver precipitation? What is the effect of high pH (more basic)? Provide appropriate
explanation per answer
Part 4. Butanoic acid (ka= 1.52× 10-5) has a partition coefficient of 3.0 (favors benzene) when distributed bet.
water and benzene. What is the formal concentration of butanoic acid in each phase when
0.10M aqueous butanoic acid is extracted w❘ 25 mL of benzene
100 mL of
a) at pit 5.00
b) at pH 9.00
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell