a)
Interpretation:
Consider the following half reactions.
The strongest and weakest oxidizing agent has to be determined.
Concept introduction:
Therese are chemical energy is converted into electrical energy.
In all electrochemical cells, oxidation occurs at anode and reduction occurs at cathode.
An anode is indicated by negative sign and cathode is indicated by the positive sign.
Electrons flow in the external circuit from the anode to the cathode.
In the electrochemical cells two half cells are connected with salt bridge. It allows the cations and anions to move between the two half cells.
Under certain conditions a cell potential is measured it is called as standard potential
Standard potential
The
The
Electrochemical series:
It is a decreasing order of the reduction potentials. The most positive
a)
Answer to Problem 22PS
Strongest oxidizing agent -
Weakest oxidizing agent -
Explanation of Solution
The given table:
Highest
From the given table,
Strongest oxidizing agent -
Weakest oxidizing agent -
(b)
Interpretation:
Consider the following half reactions.
The oxidizing agents which are capable of oxidizing
Concept introduction:
Electrochemical cells:
Therese are chemical energy is converted into electrical energy.
In all electrochemical cells, oxidation occurs at anode and reduction occurs at cathode.
An anode is indicated by negative sign and cathode is indicated by the positive sign.
Electrons flow in the external circuit from the anode to the cathode.
In the electrochemical cells two half cells are connected with salt bridge. It allows the cations and anions to move between the two half cells.
Under certain conditions a cell potential is measured it is called as standard potential
Standard potential
The
The
Electrochemical series:
It is a decreasing order of the reduction potentials. The most positive
(b)
Answer to Problem 22PS
Oxidizing agents are capable of oxidizing
Explanation of Solution
Higher than
From the given table,
Therefore,
(c)
Interpretation:
Consider the following half reactions.
A balanced chemical equation for the reaction of
Concept introduction:
Electrochemical cells:
Therese are chemical energy is converted into electrical energy.
In all electrochemical cells, oxidation occurs at anode and reduction occurs at cathode.
An anode is indicated by negative sign and cathode is indicated by the positive sign.
Electrons flow in the external circuit from the anode to the cathode.
In the electrochemical cells two half cells are connected with salt bridge. It allows the cations and anions to move between the two half cells.
Under certain conditions a cell potential is measured it is called as standard potential
Standard potential
The
The
Electrochemical series:
It is a decreasing order of the reduction potentials. The most positive
(c)
Answer to Problem 22PS
Explanation of Solution
A balanced chemical equation for the reaction of
Let’s calculate the
The value is negative, it is reactant –favoured.
(d)
Interpretation:
Consider the following half reactions.
A balanced chemical equation for the reaction of
Concept introduction:
Electrochemical cells:
Therese are chemical energy is converted into electrical energy.
In all electrochemical cells, oxidation occurs at anode and reduction occurs at cathode.
An anode is indicated by negative sign and cathode is indicated by the positive sign.
Electrons flow in the external circuit from the anode to the cathode.
In the electrochemical cells two half cells are connected with salt bridge. It allows the cations and anions to move between the two half cells.
Under certain conditions a cell potential is measured it is called as standard potential
Standard potential
The
The
Electrochemical series:
It is a decreasing order of the reduction potentials. The most positive
(d)
Answer to Problem 22PS
Explanation of Solution
A balanced chemical equation for the reaction of
Let’s calculate the
The value is positive, it is product –favoured.
Want to see more full solutions like this?
Chapter 19 Solutions
Chemistry & Chemical Reactivity
- Please correct answer and don't used hand raitingarrow_forward(a) The following synthesis of the molecule shown in the circle has a major problem. What is this problem? (2 pts) 1) HBr (no peroxides) 2) H- NaNH2 Br 3) NaNH, 4) CH3Br 5) H2, Pd (b) Starting with the molecule shown below and any other materials with two carbons or less, write out an alternate synthesis of the circled molecule. More than one step is needed. Indicate the reagent(s) and the major product in all the steps in your synthesis. (5 pts) 2024 Fall Term (1) Organic Chemistry 1 (Lec) CHEM 22204 02[6386] (Hunter College) (c) Using the same starting material as in part (b) and any other materials win two carpons or less, write out syntheses of the circled molecules shown below. More than one step is needed in each case. Indicate the reagent(s) and the major product in all the steps in your synthesis. You may use reactions and products from your synthesis in part (b). (5 pts)arrow_forwardalt ons for Free Response Questions FRQ 1: 0/5 To spectrophotometrically determine the mass percent of cobalt in an ore containing cobalt and some inert materials, solutions with known [Co?) are prepared and absorbance of each of the solutions is measured at the wavelength of optimum absorbance. The data are used to create a calibration plot, shown below. 0.90- 0.80- 0.70 0.60 0.50 0.40- 0.30 0.20- 0.10- 0.00- 0.005 0.010 Concentration (M) 0.015 A 0.630 g sample of the ore is completely dissolved in concentrated HNO3(aq). The mixture is diluted with water to a final volume of 50.00 ml. Assume that all the cobalt in the ore sample is converted to Co2+(aq). a. What is the [Co2] in the solution if the absorbance of a sample of the solution is 0.74? 13 ✗ b. Calculate the number of moles of Co2+(aq) in the 50.00 mL solution. 0.008 mols Coarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning